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ABSTRACT

This paper describes the behaviour of large-length ships built using fibre-reinforced plastic composite
materials under fire and large deformations. A novel methodology is proposed in order to analyse
inelastic buckling and post-buckling of steel structures due to thermal loading and also extend this
to the phenomenon regarded as pyrolysis that is natural in composite structures. The methodology
is validated against the literature. A model of a container-ship where a fire scenario located in the
engine room is used to demonstrate the methodology against a real case scenario. The section of the
cargo hold closest to the engine room is structurally analysed, focusing in the integrity of the bulkhead
and the supports of the TEU containers.

Keywords: Fire Safety, Fire Collapse, Buckling, Thermo-mechanical, Composites, Marine Struc-
tures

NOMENCLATURE

ρ density [ kg
m3 ]

λ eigenvalue
n normal
Λ rotation matrix
lt thickness [m]
v velocity [ms ]
ϕ volume fraction
Ω domain
k through-thickness thermal conductivity

[ W
m°C ]

hconv convection coefficient [ W
m2°C ]

F degradation fraction
ϵ emissivity
h specific enthalpy [ J

kg ]

q heat flux [ W
m2 ]

w mass flux [ kg
m2s

]

ṁs→g mass flux rate [ kg
m2s

]

Q energy source [ J
kg ]

Cp specific heat capacity [ J
kg°C ]

CT specific heat matrix [ W
m3 ]
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σβ Stefan-Boltzmann constant [5.67 ·
10−8 W

m2°K4 ]
T temperature [°K]
Tad adiabatic temperature [°K]
R universal gas constant [8.314 J

kmol°K ]
θ fibre orientation [m−1]
Pcr critical buckling load [N]
lc characteristic length [m]
β compress-traction coefficient
D constitutive tensor [Pa]
δ damage threshold
a displacement [m]
σ̄ effective stress [Pa]
C elastic constitutive tensor [Pa]
f force vector [N]
Gf fracture energy [ J

m2 ]

I inertia [m4]
d isotropic damage index
ν Poisson ratio
A pre-exponential factor of the isotropic

damage model
K stiffness matrix [Nm ]
ε strain
γ engineering shear strain
σ stress [Pa]
τ engineering shear stress [Pa]
ς stress weight factor
Π total potential strain energy
E Young modulus [Pa]
χ Mourtiz and Gibson fitting parameter
α thermal expansion coefficient [°K−1]

1 INTRODUCTION

Buckling collapse is a critical structural failure because when a structural member undergoes buckling,
its load-bearing capacity is detrimentally decreased. This results on a redistribution of the internal
stresses inside the structure to non-buckled structural members, experimenting higher stresses that
they were designed for. Current regulations from classification societies prevent this mechanical failure
by means of correct scantling and limiting the span length between reinforced structural members to
avoid low buckling modes.

Buckling is a bifurcation phenomenon that transitions from a stable in-plane deformation state (axial)
to a new in-plane plus an out-of-plane deformation state. Buckling is a non-linear geometric dominated
problem and is commonly generated when an out-of-plane perturbation is applied to a structural
member that operates in in-plane state.

In practise, it is very odd to have a structure to fail under pure buckling, commonly inelastic buckling
is the most common failure mechanism. Plenty of reports of accidents from bulk-carriers or container-
ships (Erika, Prestige, Aegean Sea, etc.) determine buckling as the origin of collapse of those marine
structures, specially those involving hull-deck buckling. However, there is very little research concern-
ing buckling of marine structures caused by fire. Bulk-carriers, Ro-Ros or container-ships present high
buckling risk in the presence of fire due to its hollow shape. Thermal buckling is not rare, marine
accidents such as the MS Nordlys, MSC Flaminia, Stolt Valor or Sorrento are a good example of it.
Nevertheless, the majority of large length ships (over 50 m), are designed using metal materials and
thus the buckling behaviour is different to the one from Fibre Reinforced Polymers (FRP).

FRP materials present better mechanical and thermal characteristics, e.g., steel presents a higher
Young’s modulus, lower yielding and ultimate stress or higher thermal expansion coefficient compared
to FRP (Shakir Abbood et al., 2020). Regulations such as the Convention for the Safety of Life at
Sea (SOLAS) introduce the concept of ’steel equivalent’ structural material, thus when comparing the
material properties of FRP to its ’steel equivalent’ two aspects arise. First, composites present a lower
thermal expansion, which translates in a higher critical temperature to buckle if compared to steel.
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The latter is an advantage in combination with its slow conduction of heat due to having a lower
conductivity. Second, the fact that the ratio between the yield or ultimate stress over the Young’s
modulus is significantly higher for composites, which delay the initiation of inelastic damage specially
due to thermal expansion. Other key aspects are its low density that increases the cargo capacity
or being able to obtain a tailored configuration to increase the inertia such as in sandwich stacking.
These characteristics show an advantage in the application of FRP against steel structures when it
comes to thermal inelastic buckling.

This research is part of the European H2020 project named FIBRESHIP. The project focuses on the
production of knowledge and technology to build complete large-length vessels made of FRP materials.
Within the project three prototype vessels were designed, the one presented here is the container-ship
exposed to fire scenario.

Fire in composites is a complex phenomenon since it involves pyrolysis, a thermo-chemical decompo-
sition process affecting the resin (Henderson et al., 1985; Mouritz et al., 2009). Pyrolysis results in the
degradation of thermo-mechanical properties of the composite as a whole and its posterior structural
collapse. The thermo-mechanical analysis of composites in the presence of fire in marine applications
can be summarised by the work derived from Henderson et al. (Chippendale et al., 2014; Dodds et al.,
2000; Gibson et al., 1995; Henderson and Wiecek, 1987; Henderson et al., 1985; Looyeh and Bettess,
1998; Lua et al., 2006) that focuses on the solution of the one-dimensional heat equation with the
assumption of pyrolysis and gas generation for FRP laminate materials. The contribution of Mouritz
and Gibson (Gibson et al., 1995, 2004; Mouritz and Mathys, 2000, 2001) is significant on the thermo-
mechanical characterisation of the post-fire properties of composites and authors such as Asaro et al.
(Asaro et al., 2009) or Tran et al. (Tran et al., 2018) have studied the effect of thermal-buckling in
composites based on this.

There are different approaches to model the constitutive behaviour of composites. Most of the re-
search involving fire uses either the orthotropic constitutive model (Green and Naghdi, 1965) which
incorporates the assumptions of Reuss (Reuss, 1929) and Voigt (Voigt, 1889). Alternatively, finer
approaches are used based on the classical mixtures theory (CMT). One of this approaches is the
so-called Rule of Mixtures (ROM) (Car et al., 2000; Rastellini et al., 2008) and in this particular
research the Serial/Parallel Rule of Mixtures (SPROM) (Rastellini et al., 2008) has been employed,
however it was adapted in order to introduce the thermal expansion of the composite.

Commonly the buckling analysis of FRP structures is performed based on linear buckling of or-
thotropic constitutive materials (Abdoun et al.; Al-Waily, 2015; Ounis et al., 2014; Shiau et al., 2010;
Thangaratnam et al., 1989), however this would limit the calculus to linear analysis. Instead a novel
thermo-mechanical model is proposed using the adapted SPROM theory and the corotational method
proposed by Felippa and Haugen (Felippa and Haugen, 2005) that deals with both non-linear consti-
tutive and geometric aspects of composite thermal buckling.

Hence this paper focuses in the development of a thermo-mechanical model for composite materials
with pyrolysis. The model combines the ideas of Henderson et al. and is coupled with the non-
linear geometric and non-linear constitutive mechanical model by combination of both SPROM and
corotational theories. This allows to analyse composites and buckling and to take all the non-linearities
of such complex problem (damage, orthotropy, pyrolysis, buckling instability, etc.). The application
of this model is tested against analytical benchmark results for the Euler-buckling beam and the
Laminate-plate buckling, the first case is used to illustrate the non-linear capabilities of the constitutive
models and the second the usefulness of SPROM model to obtain the orthotropy, characteristically,
of laminate composites. The last application is ambiented on marine structures, most of the thermal
buckling applications present in literature revolve around piping, tank storage or supporting framing
structures under fire loads (200, 2009; Holmas and Amdahl). The case presented here is based on a
fire scenario of the machinery room in a container-ship built entirely of composite materials and how
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thermal buckling plays a major role to the collapse of the structure.

2 THERMAL MODEL

The thermal model combines the governing model proposed by Henderson et al. (Henderson et al.,
1985) and the flux boundary conditions are prescribed using the definition of adiabatic temperature
introduced by Wickstrom Ulf et al. (Wickstrom Ulf et al., 2007)

ρCp
∂T

∂t
= ∇ · (k∇T )−wgCpg∇T − ∂ρ

∂t
(Qp + hs − hg) ∀x ∈ Ω, t ≥ 0

q = (−k∇T) · n =
(
σβϵ(Tad

4
k − T 4

k ) + hconv(Tad − T )
)

∀x on ∂Ω, t ≥ 0

ρ(t = 0) = ρ0 ∀x ∈ Ω

T (t = 0) = T0 ∀x ∈ Ω

(1)

where Cp is the specific heat capacity, T is the temperature, k is the through-thickness thermal
conductivity, hg is the gas specific enthalpy, wg is the gas mass flux, Cpg is the gas specific heat
capacity, Qp is the polymer degradation energy source, hs is the solid specific enthalpy, q is the
normal heat flux component, n is the normal, σβ is the Stefan-Boltzmann constant, ϵ is the
emissivity, Tadk is the adiabatic prescribed temperature in Kelvin, Tad is the adiabatic prescribed
temperature in Celsius, hconv is the convection coefficient, Ω is the total domain and ∂Ω refers to
the domain boundary.

In this paper the profile of temperature through-thickness is assumed to be linear if stationary regime
is reached and not substantial pyrolysis has occurred (Equation 1).

∆T = ∆T0 +
δT

lt
z ≡ T1 + T2

2
+

T2 − T1

lt
z (2)

where T1 and T2 are the temperature of the cold and hot end respectively (see Figure 1 and Figure 7).
This linear distribution is obtained when considering that the thermal properties of the different layers
are the same, otherwise a stepwise linear distribution would be obtained.

3 MECHANICAL MODEL

The mechanical part of the thermomechanical model presented in this work is based in non-linear shell
finite elements. The geometrical non-linear strategy is based in the corotational method developed
by Felippa and Haugen. The core element used by the corotational shell model is a 3-node triangular
element with three translations and three rotations per node, which is obtained by the combination
of a membrane element and a plate element. The membrane element is based in the optimal triangle
element with drilling rotation presented in (Felippa, 2003). The plate element is based in the classical
DKT element initially presented in (Dhatt, 1970). The constitutive formulation is introduced using
the Serial/Parallel Rule of Mixtures (SPROM) (Rastellini et al., 2008).

3.1 Non-linear geometric DKT element

The discrete Kirchhoff triangle presents a kinematic expressed in Voigt notation such as

ε = [εx, εy, γxy]
T , σ = [σx, σy, τxy]

T (3)
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Using the same procedure as in (Oñate, 2013), the strain can be re-written in membrane and bending
components

ε =

 εx
εy
γxy

 =


∂ax
∂x
∂ay
∂y

∂ax
∂y

+
∂ay
∂x

 ≡

1 0 0 −z 0 0
0 1 0 0 −z 0
0 0 1 0 0 −z

[εm
εb

]
(4)

where a is the displacement, σ is the stress and ε is the strain vectors respectively. On the
other hand, εm is the membrane strain and εb is the bending strain . Equation 3 and Equation 4
are expressed in local coordinate system, generally a rotation matrix (Λ) is used to transform the
local magnitudes to global. In the corotational formulation proposed by Felippa and Haugen this
transformation matrix depends on the node displacements (a).

This way the non-linear geometric dependency is introduced into the problem. Commonly the total
potential strain energy is minimised with respect the displacement field (Thangaratnam et al., 1989),
leading to the following buckling problem

∂Π

∂a
=
∑nelem

e=1 Λfi − fext =
∑nelem

e=1 ΛTKΛa− fext = 0

∂2Π

∂a2
= |KL + λKNL| = Λ

∂fi
∂a

+
∂Λ

∂a
fi = ΛTKΛ+

(
∂ΛT

∂a
KΛ+ΛTK

∂Λ

∂a

)
a = 0

(5)

where Π is the total potential strain energy, K is the stiffness matrix, KL is the linear geometric
stiffness matrix, KNL is the non-linear geometric stiffness matrix , fi and fext are the internal and
external force vectors respectively. The subscript e refers to element and λ is the eigenvalue of the
buckling problem.

3.2 Serial-parallel rules of mixing (SPROM)

The SPROM splits the state variables, strain and stress, into parallel and serial directions by employ-
ing the concept of projector matrices. Note that the denomination parallel and serial corresponds to
the fulfilment of iso-strain and iso-stress hypothesis.

ε ≡ εp + εs = Pp,εε+Ps,εε (6) σ ≡ σp + σs = Pp,σσ +Ps,σσ (7)

Parallel
{
εp = εp,f = εp,m

σp = ϕfσp,f + ϕmσp,m

(8) Serial
{
σs = σs,f = σs,m

εs = ϕfεp,f + ϕmεp,m
(9)

where σp,m is the parallel matrix stress, σs,m is the serial matrix stress, σp,f is the parallel fibre
stress, σs,f is the serial fibre stress, σs is the serial composite stress, σp is the parallel composite
stress, εp,m is the parallel matrix strain, εs,m is the serial matrix strain, εp,f is the parallel fibre
strain, εs,f is the serial fibre strain, ϕm is the matrix volume fraction and ϕf is the fibre volume
fraction.

3.3 Thermal constitutive model of the constituent materials

The non-linear constitutive model used to model inelastic composites is the so-called isotropic damage
model (Chaves, 2013).

σi := (1− di)Ci(εi − εT,i), ∀i ∈ f,m (10)
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where σi is the stress, εi is the strain, di is the isotropic damage index, Ci is the elastic
constitutive tensor and εT,i is the thermal strain for the constituent material ’i’ (fibre or matrix).
The thermal strain of each of the constituent materials is anisotropic

εT,i := αi∆T = αi

(
T (x, t)− T (x, 0)

)
, ∀i ∈ f,m (11)

where αi is the thermal expansion coefficient and is defined as α := [αx, αy, 0, 0, 0]
T . The Kirchhoff-

Love theory expresses the elastic constitutive matrix as

Ci :=
Ei

1− ν2i

 1 νi 0
νi 1 0

0 0
1− νi

2

 , ∀i ∈ f,m (12)

where Ei is the Young modulus and νi is the Poisson ratio . When the composite pyrolyse, both
Young’s modulus (E) and yield stress (σy) are decreased as stated by (Mouritz and Gibson, 2006).

Pi(T, F ) =

(
Pu,i + Pr,i

2
− Pu,i − Pr,i

2
tanhχ1,i(T − Tg,i)F

χ2,i

)
, ∀i ∈ f,m (13)

where (Pu) is the unrelaxed and (Pr) is the relaxed value of a generic property (P ), Tg,i is the glass
transition temperature, χ1,i is the first Mourtiz and Gibson fitting parameter, χ2,i is the second
Mourtiz and Gibson fitting parameter.

Two changes have to be done for isotropic damage model from (Chaves, 2013) in order to take the
effect of the thermal stress in the evolution of the yielding surface

δi =
(
ς +

1− ς

βi

)√
E0,i

√
σ̄i

σy,i
: (C0,i)−1 :

σ̄i

σy,i
∀i ∈ f,m

Ai =

(
Gf iEi

lc,i σ
2
y,i

− 1

2

)
−→

Gf iEi

σ2
y,i

= constant ∀i ∈ f,m
(14)

where σ̄i is the effective stress, δi is the damage threshold, ς is the stress weight factor, β,i is
the compress-traction coefficient, E0,i is the initial Young modulus, σy,i is the yield stress, which
is considered to be dependent of the temperature and the degradation factor, C0,i is the initial elastic
constitutive tensor, A,i is the pre-exponential factor of the isotropic damage model , lc,i is the
characteristic length and Gf i is the fracture energy.

Equation 14 is modified to maintain a constant yielding surface if the rate of thermal degradation is
null and that the rate of damage is considered constant.

3.4 SPROM with thermal expansion

Rastellini et al. derived an iterative algorithm to satisfy the iso-stress hypothesis of an orthotropic
material. If thermal expansion is taken into account, the prediction of the increment of the serial
strain for the matrix component yields

∆εs,m|0 = M :
(
Csp,m∆εs + ϕf (Csp,f − Csp,m)∆εp + ϕf∆σT,m − ϕf∆σT,f

)
(15)

M =
(
ϕfCss,m + ϕmCss,f

)−1
(16)

∆σT,m = Csp,m∆εT,p,m + Css,m∆εT,s,m (17)
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∆σT,f = Csp,f∆εT,p,f + Css,f∆εT,s,f (18)

where ∆ σT,f is the incremental stress of the fibre and ∆ σT,m is the incremental stress of the matrix
due to thermal expansion. Both terms are the addition into the new thermal SPROM formulation.
Cij,k is the projected elastic constitutive tensor in serial and parallel directions (i, j) for the fibre or
matrix component (k).

4 VALIDATION OF THE NUMERICAL MODEL

Three numerical models are presented. First the euler-buckling beam case since it is a one-dimensional
buckling problem, therefore the transverse effect present on composites can be neglected. A second case
named Laminate-plate buckling is presented to show the correctness of the SPROM theory predicting
orthotropy and the third, Thermal-buckling collapse of a container-ship, shows a real application of
the methodology to assess structural collapse given a fire scenario.

4.1 Euler-buckling beam

16.67x1

Composite16.67x1

16.67x1

PVC Core

Composite

l t
=
5

0

�T

z

ΔT0

ΔT

L=1000

T1

T2

Figure 1: Description of the one-
dimensional buckling problem.

The euler-buckling beam is a well-known problem, in this case the
beam is simply supported in both extremes and the dimensions can
be seen in Figure 1. The material is a symmetric sandwich com-
posed of a first layer of glass fibre and vinylester with a volumetric
fibre fraction of 60%, the second layer is a core of PVC with a den-
sity of 80 g/m3 and the third layer is the same as the first. This
problem is very useful since there is no transverse influence and the
problem is highly influenced by the constitutive properties in the
fibre-direction.

In this example the difference between the hot and cold ends (δT ) is of 1 °C and the thermal properties
of the composite and the core is considered uniform and equal for sake of simplicity. The computational
model of the domain described in Figure 1 consist of a plate that is simply supported on the upper
and lower edge, the plate is discretised in 20× 20 divisions of symmetric-structured triangles and the
thickness is subdivided in 30 layers.

The expression of the critical load for a symmetrical cross-sectional composite simply supported beam
can be written as

Pcr =
π2Db

L2
(19)

where Pcr is the critical buckling load, L the length between supports and Db is the bending
component of the constitutive matrix, also referred as flexural rigidity

Db =

∫
lt

(
Ez2

)
dz (20)

The critical buckling load is equal to the axial force caused by the thermal expansion and can be
written as

Pcr = −lbα∆T0Ē (21)

where lb is the width of the beam, ∆T0 is the increment of mean temperature and Ē is the axial
rigidity (same concept as Equation 20 but without the inertia). Using Equation 19 and Equation 21,
the critical increment of mean temperature is determined to be approximately 300 °C, however a
higher load of 400 °C is introduced instead to proof the correctness of the corotational formulation.
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Figure 2: Elastic.

Figure 2 show the correctness of the corotational theory in or-
der to predict buckling. In the figure the solution for a linear-
geometric DKT element is compared against the same element
with the corotational formulation, the linear geometric converges
to the analytical force for a temperature of 400 °C, whereas
the non-linear geometric (corotational) stagnates when the time
reaches the critical buckling temperature of 300 °C as it is sup-
posed to happen. This is a clear proof on how the non-linear
geometric theory predicts well the non-linear geometric stiffness
in Equation 5.

In Figure 2, the solution of the critical load is shown for elastic, degraded, inelastic thermal buckling
and the combination of degraded and inelastic thermal buckling.
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Analyitical Degraded, 50% N
x

Figure 3: Degraded.

In Equation 19, the critical load obtained when the Young’s
modulus (E) is degraded to half would result in the half of the
virgin critical load. Using a law such as Equation 13, the young
modulus can be dependent on the temperature, assuming that
near the critical temperature of 300 °C the elastic modulus is
half of the virgin value, the numerical results in Figure 3 show a
perfect agreement with the analytical buckling force and it can
be observed that the critical buckling load has reduced to half.
In real applications, materials even reduced more than half and
that is why thermal buckling is a very important problem since
it may lead to a prompt collapse of structural reinforcements in
ships.
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Damage - Analytical

Figure 4: Inelastic.

Generally, pure buckling is very uncommon in real life, inelas-
tic buckling is easier to be observed. Inelastic buckling happens
when a load-bearing member buckles and its own deflection gen-
erates fluency of the material that leads to damage, plasticity or
fracture. In Figure 4, the Young’s modulus is non-dependent
of the temperature and instead the yield stress is reduced using
Equation 13, both matrix and fibre have the same evolution re-
spect temperature for the sake of simplicity. Observe that at the
beginning, the inelastic and elastic numerical models match ex-
actly, but as the yielding limit is reduced on both matrix and fi-
bre, the fluency norm described in Equation 14 increases quicker
since the yielding stress is lower and this accelerates the damage
evolution of the fibre and matrix.
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Figure 5: Pyrolysed and inelastic.

At the end of the analysis the axial load converges to a lower
load than the expected for the virgin material. This can be un-
derstood as if the Young’s Modulus involved in the critical load
is multiplied by (1−d) where d is the damage index, this theoret-
ical limit is shown in Figure 4. It is fundamental to understand
that the design buckling load that a structural member can en-
dure is reduced in inelastic buckling, however in the presence of
thermal inelastic buckling, the result will be even worse since
the yield stress is also reduced. It is interesting to note that this
is directly related to the yield stress over Young’s modulus ratio
(σy

E ) and how this evolves with respect to the temperature.
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Figure 5 shows the outcome if pyrolysis is taken into account. The material considers pyrolysis and
inelasticity but not thermal degradation of the mechanical properties as in Figure 3. The result seems
similar to the inelastic case in Figure 4, nevertheless, when the mean pyrolysis parameter (F ) is close
to 0%, the beam collapses suddenly. This is in correspondence with Figure 6 that shows that near the
time of collapse the pyrolysis process has a degradation fraction (F ) close to zero, making the problem
ill-conditioned as according to Equation 13, the Young’s modulus tends to zero as well.

This evidences how critical is pyrolysis in the collapse of composite structures and in particular for
buckling since the inelastic case could still endure a reduced load, whereas the inelastic pyrolysed case
collapses dramatically.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time (s)

0

10

20
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100
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%
)

Figure 6: Evolution of the mean degradation of the section.

4.2 Laminate-plate buckling

The Laminate-plate buckling is a well known problem studied in (Al-Waily, 2015; Ounis et al., 2014;
Shiau et al., 2010; Thangaratnam et al., 1989). This benchmark case shows the buckling phenomenon
of orthotropic shells. The dimensions of this example can be found in Figure 7. The material is a
symmetric monolithic composite stack of ten layers of uni-directional glass fibre and vinylester with
a fibre volumetric fraction of 60%. The thermal properties of the fibre and matrix are considered the
same as the composite. The mesh generated in this example is the same as in the Euler-buckling
beam, but it is simply supported on all edges.

5 x 10
Fibre Glass

+ Vinylester

�T

z

ΔT0

ΔT

T1

T2

L
=

1
0
0
0

lt=50

Figure 7: Description of the two-dimensional buck-
ling problem.

The critical buckling temperature for different fi-
bre orientations is compared against the analytical
orthotropic solution. Fibre angle orientation is de-
fined as follows, a 0°fibre orientation is aligned to
the horizontal axis and 90°to the vertical axis. The
height of the plate is 1000 mm and the width is vari-
able, considering a total of 3 different width over
height aspect ratios (0.75, 1, 2). The minimum crit-
ical buckling temperature is then found (the ambi-
ent and initial temperatures are considered 0 °C)
for these different aspect ratios. Similarly to (Al-
Waily, 2015), the orthotropic definition of the crit-
ical buckling increment of temperature can be de-
rived from plate theory for simply supported plates.
Using the definition of the elastic constitutive ma-

trix (C) in Equation 12 and defining the plate flexural rigidity matrix (D) and the thermal buckling
coefficient (η), the critical buckling increment of temperature yields

9



D =

∫
lt

C ·

−z 0 0
0 −z 0
0 0 −4z

 · zdz (22) η =

∫
lt

C · α dz (23)

∆Tcr =
D11ā

4 + ā2b̄2(D12 +D21 + 2D33) +D22b̄
4

η1ā2 + η2b̄2
(24)
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Figure 8: Critical temperature at different
angles.

where ā = πn
W and b̄ = πm

L , W is the width of the plate, L
is the length of the plate, n and m are the horizontal and
vertical modes (the most critical ones are when n = m = 1).

Figure 8 shows the numerical results for the critical buckling
mean temperature for different angles against the analytical
orthotropic result obtained from Equation 24. It shows a very
good agreement for aspect ratios of 0.75, 1 and 2. Note that
in this example, the constitutive model is considered without
pyrolysis and elastic as well, in contraposition to the Euler-
buckling beam example. The SPROM theory demonstrates
to correctly predict the two-dimensional thermal buckling of
the plate, guaranteeing the correct prediction of buckling in
laminate structures and also the possibility of adding thermal
degradation (pyrolysis) and inelastic buckling as shown in the Euler-buckling example.

4.3 Thermal-buckling collapse of a container-ship

Fire
Engine Room

Cargo Hold

Bulkhead
Container Support (1 - left, 2 - right)

Figure 9: Container-ship profile section.
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Figure 10: Thermal load for both steel and FRP design.

The containership design used in this example
was generated from the research related to FI-
BRESHIP. It is assumed that in the engine room
of the ship a fire is originated, the thermal load
is then applied to the bulkhead between the en-
gine room and the immediate cargo hold and it
affects the two supports holding the TEU con-
tainers. The thermal load is assumed to be an
ISO-834 during one hour of simulation. The adi-
abatic temperature prescribed is assumed to be
those in Figure 10, unless thermal insulation is
considered, then ambient temperature is consid-
ered instead (20 °C). Steel and FRP – standard
glass fibre and epoxy resin – materials are con-
sidered for these structural members and also if
the bulkhead was insulated from the side of fire.
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Raw Steel Steel Insulated

0.0      0.5     1.0

Figure 11: Damage and deformation of the structure for different designs.

In Figure 11 the four designs are shown. The raw steel without insulation shows that support 1 (the
one closest to the bow) buckles at time 620s and there is significant damage in the supports before
total collapse. When insulated there is a little damage on the vertical members of the support due to
support 1 entering a post-buckling state, however the structure does not collapse and holds for 3600s.
In the case of FRP without insulation, the structure suffers a higher damage even in the bulkhead since
the material pyrolysis to relative low temperatures (200°C) and the structures collapses at 590s. If
the FRP is insulated, the structure does not collapse and there is only one vertical structural member
of support 1 that enters into post-buckling and presents damage.

5 CONCLUSIONS

In this paper a thermo-mechanical composite model was proposed to analyse non-linear geometric
problems such buckling. It is clear that the euler-buckling beam problem showed that the corrotational
formulation is able to predict buckling (Figure 2) and the effect of fire on the constitutive properties in
order to take into account thermal degradation of mechanical properties (Figure 3 and Figure 4) and
also the pyrolysis effect present in composites (Figure 5). The correctness to use the SPROM theory
to model composites was shown in the laminate-buckling plate example since it was able to correctly
predict 2D buckling for different aspect ratios and fibre orientations (Figure 8).

Finally a naval example was presented where a containership’s structural response is analysed in the
presence of fire. The developed methodology shows that it is possible to address the problem of thermal
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buckling and post-buckling. Steel shows worse response if compared to composite. Composites degrade
at temperatures lower than steel and despite so the difference of time when non-insulated is 590s for
FRP and 620s for steel, despite steel having a glass temperature transition of 4 times greater than
the glass-epoxy. This is due to the effect of higher conductivity in metal materials and the fact that
composites pyrolyse.

Interestingly if the bulkhead is insulated the steel design obtains a worse result since various structural
members of the supports enter in post-inelastic-buckling regime, this is because the bulkhead with
insulation experiments a 10°C thermal gradient, causing it to endure less load and to redistribute it
to the supports. The composite with insulation still shows that one structural member in support 1
has entered post-inelastic-buckling due to similar process as in steel.

Recall that the FRP configuration fulfils the concept of ’steel equivalent’ imposed by SOLAS and this
evidences the efficiency of using composite materials in the design of marine structures. However, to
use composites as design materials, which are naturally more flexible (prone to buckling), means to
use methodologies as the ones shown in this paper, specially when fire is a major risk to take into
account.
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