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Abstract. Computational Fluid Dynamics (CFD) has become an indispensable tool in the field
of engineering design evaluation and optimisation. Existing numerical simulation methods are
computationally expensive, memory demanding and time-consuming, thus limiting design space
exploration and forbid generative design. In order to overcome these challenges, we propose a
deep learning based surrogate modeling in-lieu of CFD simulations. Our proposed framework
can predict flow fields (e.g pressure field) on the surface of the geometry as well as any overall
scalar parameters (e.g drag force) given a three-dimensional shape input. It can also provide
uncertainty quantification over predictions. Finally, we demonstrate that our proposed surrogate
modelling does not require pre-processing of the input geometry and also outperforms state-of-
the-art models in prediction accuracy. When comparing a dataset on aerodynamic drag of car
geometries, we show that our model reduced the error standard deviation by a factor of ≈ 2.5
compared to a Gaussian Process-based surrogate model.

1 Introduction

Hydrodynamic hull form optimisation is of utmost importance during the vessel design to
assure maximum fuel efficiency. Traditionally, hull form optimisations rely on domain experts
to vary design parameters (such as hull length, shape, . . . ) and evaluate their influence on
given sets of objectives [1]. Such approaches are inherently very limiting in exploring the full
design space and hence lower chance of finding the most optimum design. On the other hand,
automated design optimisation is the process of allowing a computer algorithm to evolve an
initial design to meet or exceed given sets of objectives. A notable example of a successful
automated design optimisation is the 2006 NASA ST5 spacecraft antenna designed through
evolutionary algorithms [2].

With advances in computing power and computational algorithms, hull form optimisation us-
ing evolutionary algorithms or other automatic optimisation algorithms has recently attracted
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many attentions [3, 4, 5, 6]. A comprehensive overview of geometry optimisation is presented
by Harries [7]. However, the analysis of the flow field tends to be the most computationally in-
tensive and time-consuming part of the optimisation process. This is due to complex non-linear
hydrodynamics such as wave-making, transom stern ventilation,interaction effects at multihull
ships and dynamic sinkage and trim of the vessel. In order to accurately capture such non-linear
hydrodynamics, high fidelity Computational Fluid Dynamics (CFD) simulations are required.
While CFD simulations can provide accurate performance predictions for a full-scale ship [8],
they tend to be highly resource demanding. The drawback of computationally expensive objec-
tives evaluations, hinders the applicability of using advance global optimisation algorithms for
automatic design optimisation process.

A less computationally demanding alternative for objective function approximation is to
use deep learning techniques. Deep learning architectures are highly suitable when dealing with
high–dimensional data such as geometrical features. The use of deep learning based techniques to
predict CFD simulations has recently attracted some attention. Guo et. al [9] used Convolutional
Neural Network (CNN) architecture to predict steady laminar flow field around bluff bodies.
The work is considered as pioneering the use of CNN for flow prediction but provides only
qualitative comparison of the flow field and does not provide accurate comparison of drag and
lift coefficients. Hennigh [10] proposed using U-Net based CNN architecture to predict the flow
around bluff bodies. the proposed architecture was then used in a gradient based optimisation
for reducing the drag to lift ratio of an airfoil. Umetani and Bickel [11] suggested the use of
Gaussian process (GP) as surrogate model for CFD simulations. They have successfully used the
approach for aerodynamic flow over car geometries. Their proposed approach showed excellent
agreement with CFD simulations for both the pressure distribution over geometry surface and
the resulting drag coefficients. Furthermore, they showed that through using GP surrogate
model, their approach can also provide the uncertainty in the predicted drag coefficient. Baque
et. al [12] proposed the use of Geodesic Convolutional Neural network as the surrogate model for
CFD simulations. Similar to [11], they required PolyCube remeshing to pre-process the surface
mesh. Raissi et. al [13] introduced the concept of physics–informed neural network to predict
the lift and drag forces for a cylinder oscillating in a flow from scattered data in space and time.
Lee and You [14] used Generative Adversial Networks along with convolutional neural networks
to predict flow fields for unsteady flow over a circular cylinder in both space and time. In order
to satisfy physical constraints, they introduced physics–informed terms in the loss function of
networks. Sekar et. al [15] used a combination of convolutional neural network and classical
Multilayer Perceptron (MLP) neural network to predict incompressible steady laminar flow field
over airfoils. They used CNN architecture to parameterise the airfoil geometry while using the
MLP network to predict the drag and lift coefficients. A comprehensive summary of applications
of deep learning for fluid dynamics problems can be found at of [16].

Except for the work of and Umetani and Bickel [11] and Baque et. al [12], all the work in
literature are limited to overall flow prediction in the computational domain through the use of
CNN architectures. Although, such simulation can be informative in providing understanding
of the flow field, they are not very useful in design process and optimisation where the input
into surrogate model would need to be the 3D surface mesh representation of the geometry
and the design engineers are interested on flow fields such as pressure or wall shear stress
over the geometry surface in addition to the scalar quantities (e.g drag and lift coefficient,
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Figure 1: Examples of superstructures of existing ships and randomly generated geometries for
training the surrogate model.

hydrodynamics resistance, or sinkage and trim of the vessel). Furthermore, the surrogate model
should be capable of learning influence of fine geometrical features (such as surface curvatures,
sharp corner, . . . ). To overcome this limitation, we propose a surrogate model architecture based
on Geometrical Convolutional Neural Network (GCNN). The proposed GCNN architecture can
learn the geometrical features from the 3D surface mesh input directly and predicts both flow
fields and scalar quantities. Furthermore, we illustrate how the uncertainty can be built into
the network to also provide uncertainty of scalar predictions.

To investigate the capabilities of a surrogate model for maritime fluid dynamics, the aero-
dynamic flow around ship superstructures was considered for this study. When compared to
transient hydrodynamic flows around ship hulls, solutions for aerodynamic flows can be obtained
in steady-state simulations that are more resource-efficient and ship superstructures provide a
greater geometric variability which aids the development of an appropriate surrogate model.

2 Datasets

2.1 Ship Dataset

We generated 700 random ship geometries representing typical hull and superstructures
shapes for high speed vessels (representing geometric features of the current Austal fleet) for
training and testing of surrogate models. Each individual ship consists of an 80m long hull with
three decks of random height, beam and length. Length–to–beam and length–to–height ratios
were chosen to reflect typical values for those craft. For each geometry, the hull was chosen from
5 basic hull shapes and each deck from 8 different basic deck shapes. Figure 1 shows some ex-
amples of existing ship superstructures and of randomly generated geometries. The flow around
each ship in head wind was simulated using the OpenFOAM’s steady-state solver simpleFoam
[17] with the semi-implicit method for pressure linked equations. The computational domain
consisted of ≈ 700k cells and the ship structure had refinements along the feature edges.
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2.2 Car Dataset

Car dataset was prepared by Umetani and Bickel [11] using shapes taken from the ‘car’
category of ShapeNet [18]. It contains 889 pairs of 3D input shapes, and output CFD simulation
data consisting of drag coefficient (Cd) and pressure fields values.

3 Methodology

Our goal was to train a regression model to predict flow fields vectors (e.g pressure field) and
scalar parameters (e.g drag force) given a three-dimensional shape input. LetD = (Mm, Zm,Ym)
be the labelled training dataset, where m = 1, . . . , N, and is the mth training sample, and N
denotes total number of training samples. Mm represents three-dimensional shape defined by
V, E and F denoting sets of vertices, edges and faces. Moreover, Zm ∈ R represents global
scalar parameter and Ym ∈ RN , represents vector of local pressure fields obtained by run-
ning a CFD simulation. We trained a neural network regression model defined by a decision
function Fw, where w denotes its trainable parameters. The decision function (Fw (Mm)) was
used to predict pressure fields Ŷm and global scalar drag Ẑm given an input mesh Mm. Let
L(Zm,Ym, Fw (Mm)) represents the loss function which determines the cost between a given
ground truth labels (Zm,Ym), and the estimated label (Ẑm, Ŷm) and is given by:

L(w) =
N∑
m=1

∥∥∥Ŷm −Ym

∥∥∥2 + λ(Ẑm − Zm)2 (1)

where λ is a scaling parameter that ensures that both terms have approximately the same
magnitude.

3.1 Introducing Uncertainty

For the regression model, the output Fw is R and the probability P (Fw|Mm,w) is a Gaussian
distribution. Inputs m ⊂ M were mapped onto the parameters of a distribution on Fw by
several successive layers of linear transformation defined by w. The weights w of these layers
can be learnt by maximum likelihood estimation (MLE): given a set of training examples D =
(Mm, Zm,Ym) , wMLE were given by:

wMLE = arg max
w

logP (D | w)

= arg max
w

∑
i

logP (yi | xi,w)

With a unit Gaussian prior, this yields L2 regularisation — commonly referred to as weight
decay. Overall, however, point estimates of the network weights were obtained, without any
knowledge of the underlying uncertainty.

In order to introduce uncertainty into our prediction, weights w in a neural network were
represented by probability distributions over possible values, rather than having a single point
estimate. Therefore, it effectively meant training ensemble of an uncountable infinite number of
neural networks, where weights w in each individual network are drawn from a shared, learnt
probability distribution. Bayesian inference for neural network allows to capture epistemic
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uncertainty (“knowledge uncertainty”) by estimating the posterior distribution of the weights
given the training data.

P (w|D) =
P (D|w)P (w)

P (D)
=

P (D|w)P (w)∫
P (D|w)P (w)dw

The posterior P (w|D) is not tractable and thus the solution is subsequently obtained using
variational approximation to the Bayesian posterior distribution on the weights w of a neural
network proposed by Hinton and Camp [19] and Graves [20]. Variational learning finds the
parameters θ of a distribution on the weights q(w; θ) that minimises the Kullback-Leibler (KL)
divergence with the true Bayesian posterior on the weights.

θ? = arg min
θ

KL[q(w | θ)||P (w | D)]

= arg min
θ

∫
q(w | θ) log

q(w | θ)
P (w)P (D | w)

dw

= arg min
θ

KL[q(w | θ)‖P (w)]− Eq(w|θ)[logP (D | w)]

This resulting term is alternately referred to as (negative) variational free energy [21, 22, 23] or
the expected lower bound [21, 24, 25]. For simplicity we can write it as:

F(D, θ) = KL[q(w | θ)‖P (w)]− Eq(w|θ)[logP (D | w)] (2)

Since the model evidence is constant, maximising F minimises the KL divergence. We used
‘Bayes by Backprop’ [26] algorithm to minimise compression cost in Equation 2

3.2 Network Architecture

Our network architecture consists of two main building blocks namely the PointNet block and
Geometric Convolution block as shown in the Figure 2. PointNet++ architecture was originally
proposed by Qi et. al [27] and introduces a hierarchical structure allowing the network to capture
features at different scales. This allows the network to efficiently encode global as well as local
3D shape features. However, one of the challenges that arise from the hierarchical structure
is the resulting computational and memory cost, which inhibits its application to large point
cloud dataset. To overcome this challenge we used a lightweight PointNet architecture with
only two set abstraction levels. This allows the PointNet block to encode global features but
limits its efficacy at encoding local structures. The second geometric convolution (GCNN)
block overcomes this limitation and allows the network to learn local 3D shape features from
extra information available in the input mesh. Compared with point cloud representations used
in PointNet block, mesh-based representations also contain connectivity between neighbouring
points, so they are more efficient for learning local regions on surfaces. Moreover, extra point-
wise feature information extracted form input mesh by PointNet block allows GCNN to learn
much more effectively on large meshes.
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Figure 2: Proposed Network Architecture:

3.3 Experimentation

3.3.1 PointNet Block

The input to the PointNet block is set of 3D points {Pi |i = 1, . . . , N}, where each point Pi
is a vector of its (x, y, z) coordinate. These N points are fed into a hierarchical PointNet block
which contains two Set Abstraction (SA) levels (SA1 and SA2) and two Feature Propagation
(FP1 and FP2) levels. FP module uses conventional skip link concatenation, which is used for
combining shallow features of the SA module with the corresponding deep features of the FP
module. The first two set abstraction levels (SA1 and SA2) group input points into N1 = 512
and N2 = 128 local regions, respectively. In sampling and grouping phase we use farthest point
sampling method to sample centroids of local regions and ball query to group points. The radius
for ball query is set as 0.2 at the first set abstraction level and 0.4 at the second set abstraction
level. Each local region contains k = 64 points. These two levels extract C1 = 128 and C2 = 256
dimensional features for each local region, respectively. The output of the last SA module is
passed through successive FP modules. The FP module contains skip connections which helps
the network to learn geometric features at different scales. Fully connected layers are used on
top of the FP module to extract D = 8 dimensions feature vector for each point Pi = (x, y, z,D).

3.3.2 Geometric Convolution Neural Network Block

The input to Geometric Convolution Neural Network (GCNN) block is Mesh M = (V, E ,F)
and extra D = 8 dimensional feature channel extracted by PointNet block. GCNN block consists
of a Spline-CNN architecture [28] with 4 convolutional layers: SConv(1, 16)→ SConv(16, 32)→
2×SConv(32, 64) with a kernel size of 5. Finally, to get field and scalar predictions, a regression
head consisting of MLP layers (64, 32) and Max-pooling + MLP layer (32, 1) is used respectively.
We used ReLU activation function after each SConv.
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3.3.3 Hyperparameters

For training end-to-end network, we use Adam optimiser [29] with initial learning rate of
3 × 10−3 to optimise over ELBO (Eq. 2) with L1 loss. Learning rate was reduced on reaching
plateau by a factor of 0.1. For training, a batch size of 1 and early stopping with a patience
of 20 epochs was used. In order to minimuse loss function (Eq. 1), we set λ = 100 to control
the relative importance of the two terms, so that both terms have approximately the same
magnitude. Moreover, to force the network to learn geometric features and reduce overfitting
on scalar predictions, we dynamically adjusted λ during the training phase to give more weight
to surface pressure prediction initially. For weight uncertainity we used prior P (w) consisting
of a scale mixture of two Gaussian densities. Both having zero mean, but differing variances:

P (w) =
∏
j

πN
(
wj | 0, σ21

)
+ (1− π)N

(
wj | 0, σ22

)
where wj is the jth weight of the network, N (x|µ, σ2) is the Gaussian density evaluated at x
with mean µ and variance σ21 and σ22 are the variances of the mixture components. For Bayes
by Backprop, we averaged over 3 samples and considered scale mixture π = 4, prior σ1 = 1
and prior σ2 = 4 on the mixture prior distribution 1 and 2 respectively. We implemented our
deep-learning algorithms using PyTorch and used Tesla V100 GPUs for training.

4 Results and Discussion

In this section, we evaluate our proposed approach for predicting pressure fields and associated
scalar values for a given input shape. We quantify the performance of our proposed model for
predicting pressure fields and scalars using Mean Absolute Error (MAE) and R2 (coefficient of
determination) regression score respectively.

4.1 Car Dataset

To generate our training and testing data, we split the car dataset in a 90 : 10 ratio. We
compare our results of drag coefficient prediction with a state-of-the-art PolyCube maps-based
parametrisation approach presented by Umetani and Bickel [11]. Compared to their regression
approach, our presented method achieves a higher accuracy in predicting drag coefficient Cd
value with low uncertainty. As shown in Figure 3, standard deviation of the error is about
±0.0046 compared to ±0.012 value of previous state-of-the-art method. Our model achieves an
excellent R2 > 0.98 on both training and test dataset. Our model achieves a low MAE of 4.0
and 4.2 on the train and test datasets respectively. Figure 4 shows qualitative results for surface
pressure prediction. It can be seen that our proposed model performs well in predicting pressure
on the surface of the car.

4.2 Ship dataset

To generate our training and testing data, we split the ship dataset in a 90 : 10 ratio. When
Compared to the car dataset, the ship dataset is more complex and has varying number of
vertices for different shapes. It has on average 70k vertices per ship, which is ∼ 20× more than
car dataset (3682 vertices for each car). Moreover, it contains force coefficients in both x and
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(a) Distribution of the magnitude of errors (b) R-squared plot with uncertainty

Figure 3: (a) Error distribution has µ = 0.0006 and σ = 0.004. (b) R-squared for the proposed
regression model. Error bars shows Epistemic uncertainty (i.e. uncertainty due to limited data
and knowledge).

Ground Truth Prediction Difference

Figure 4: An example result from the car test data. (Left) Qualitative comparison of reference
ground truth and predicted surface pressure values. (Right) Difference between ground truth
and predicted surface pressure values.

y directions. Because of the size and complexity of ship dataset, we conduct an ablation study
and compare the performance of our proposed model to a couple of baselines. This allows us to
establish the efficacy of our proposed approach.

GCNN Model: We only used the GCNN block to learn surface pressure predictions.

PointNet Model: In this case, only the PointNet block is used to learn surface pressure
predictions.

PointNet+GCNN: We train our proposed architecture and train it in an end-to-end manner
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to predict both surface pressure predictions and drag coefficients. Because of the memory
limitations, we were unable to implement ‘Bayes by Backprop’ [26] and introduce uncertainty
in our predictions for this application.

(a) R-square plot for x-drag (b) R-square plot for y-drag

Figure 5: R-squared plots for the proposed regression model

Table 1: Comparison of MAE and MPE of different architectures for pressure field prediction
on ship dataset. The present architecture is a combination of PointNet and GCNN.

Models Train Test Training time

MAE MPE MAE MPE sec/epochs epochs

GCNN 4.54 3.28 4.81 3.56 60 2000

PointNet 2.87 1.56 3.54 2.28 240 1000

present architecture 1.27 0.56 2.74 1.37 360 500

Table 1 shows comparative results for surface pressure prediction. Our proposed model
achieves a substantially lower MAE and MPE (mean percentage error) for the surface pressure
prediction. This confirms our hypothesis that learning extra point-wise features using PointNet
block helped GCNN to converge. Figure 5 shows the R-squared score on the training and test
dataset for x and y force coefficient. The model achieved a better R2 score on the training
dataset compared to the test dataset. We could reduce this overfitting by gathering more data
in ranges where model has low confidence in predictions (i.e. having large error) or introducing
strong regularisations during training (e.g. ‘Bayes by Backprop’ [26] or dropout [30]). Figure 6
shows a qualitative comparison of the ground truth pressure field and predicted pressure field.
It can be seen that our proposed network learned to accurately predict the pressure field for this
large complex input geometry as the difference between predicted and ground truth pressure
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field is small. Moreover, similar to Baque et. al [12], we observed that learning to predict surface
pressure fields helped in improving scalar predictions for both, ship and car, datasets.

Ground Truth Prediction

Pressure

Difference

Figure 6: An example result from the ship test data. (Left) Qualitative comparison of reference
ground truth and predicted surface pressure values. (Right) Difference between ground truth
and predicted surface pressure values.

The error of the predicted scalar value when compared to the ground truth reached up to
4% and 6%, achieved for the y-force and x-force component, respectively. This compares to the
uncertainties experienced in hydrodynamic ship scale-model testing that can vary from 2− 6%
for fast monohull [31] or multihull vessels [32]. Hence the proposed method can be considered
sufficiently accurate for maritime performance prediction purposes.

5 Conclusion

In this paper, we proposed a Geometric Convolutional Neural Network-based (GCNN) sur-
rogate modelling approach to predict flow fields (e.g pressure field) on the surface of a geometry
as well as scalars such as drag for a three-dimensional shape input. To use neural networks for
surrogate modelling for flows around maritime structures, it is crucial to choose a data represen-
tation that encodes the geometrical properties of input data effectively. Our proposed approach
benefited from both, mesh data (GCNN) and point cloud (PointNet) representations, to learn
the underlying geometrical structure of the input data without introducing geometrical arte-
facts or compromising on vertex connectivity information. We also showed how to incorporate
uncertainty estimations into predictions by using Bayesian learning.

We showed that our proposed surrogate model based on combining Pointnet and GCNN was
able to predict the drag force on the car with a standard deviation of 0.0046, exceeding the
accuracy of the state-of-the-art model having a standard deviation of 0.012. In case of wind
resistance on ship, we showed that the proposed surrogate model achieved the lowest mean
percentage error of 1.37 on the test dataset (compared to 2.28, 3.56 for GCNN, PointNet).

10
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The predicted values of the force acting on the ship deviated by 4−6% when compared to the
ground truth which correlates to the uncertainty of towing tank experiments. The prediction
of force coefficients showed higher R2 score on the training dataset when compared to the test
dataset, indicating possibilities of over–fitting of the surrogate model. This is currently under
investigation and improved results will be published in future work.

In future work we will focus on optimisation strategies using presented surrogate modeling.
We aim to compare the optimised geometries using different surrogate models presented in Table
1 and ones derived from CFD simulations to quantify the accuracy required from surrogate
models versus their computational cost when used for cost function evaluation in optimisation
algorithms.
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