Using Machine Learning to Model Yacht Performance
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ABSTRACT

Accurate modelling of the performance of a yacht in varying environmental conditions can signif-
icantly improve a yachts performance. However, a racing yacht is a highly complex multi-physics
system meaning that real-time performance prediction tools are always semi-empirical, leaving sig-
nificant room for improvement. In this paper we first use unsupervised machine learning to analyse
full-scale yacht performance data. The widely documented ORC VPP (ORC, 2015) and the commer-
cial Windesign VPP are compared to the data across a range of wind conditions. The data is then
used to train machine learning models. A number of machine learning regression algorithms are ex-
plored including Neural Networks, Random Forests and Support Vector Machines and improvements
of 82% are obtained compared to the commercial tools. The use of physics based learning models
(Weymouth and Yue, 2013) is explored in order to reduce the amount of data required to achieve
accurate predictions. It is found that machine learning models can outperform empirical models even
when predicting performance in environmental conditions that have not been supplied to the model
as part of the training dataset.
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NOMENCLATURE

Bsp  Boat speed [knots]
Twa  True wind angle [deg]
Tws  True wind speed [knots]

NN Neural Network

CFD Computational Fluid Dynamics
VPP  Velocity Prediction Progrmam
RF Random Forest

M Intermediate model

GLM Generic Learning Model

ORC Offshore Racing Congress



1 INTRODUCTION

Accurate predictions of the performance of a racing yacht is extremely beneficial to both amateur and
professional crews alike. When a yacht is performing worse than expected changes can be made to the
sail settings in order to increase performance. Similarly if a yacht is performing better than expected
the setup can be recorded and predictions updated. It becomes increasingly hard to improve a crews
performance if there is a low level of accuracy in the performance prediction tools available.

Currently there are a number of different methods which are used to predict and simulate the per-
formance of a sailing yacht. Classic Velocity Prediction Programs (VPP) use a mixture of theoretical
analysis and empirical data to estimate the motion of a yacht. This type of method is now fast to
implement but suffers from inaccuracies. More modern VPP’s incorporate Computational Fluid Dy-
namics (CFD) to provide high fidelity data for a specific yacht that a VPP can then use to predict
performance. This method is useful but performing sufficient CFD calculations to obtain accurate
results from a VPP is extremely computationally expensive (Bohm, 2014) and thus is beyond the
capabilities of most amateur racing teams.

There are two main approaches in the applications of VPP’s. A quasi-static approach views a yacht
at a snapshot in time. The forces acting on the yacht are estimated in order to establish if the yacht is
in equilibrium, if not, the underlying assumptions such as boat speed or heel angle are changed until
an equilibrium is reached. A dynamic approach allows the yacht to accelerate in all directions. This
approach involves using time dependent equations to model the yachts behaviour.

New methods which utilise data are needed in order to improve on these issues associated with the
current methods. Advances in machine learning and data gathering capabilities provide a unique
opportunity to analyse and improve on existing models. Existing models can be extremely complex in
nature as a by-product of introducing many different parameters in order to fit the model to what is
observed in reality. The use of data should allow for a reduction in the number of parameters required
in a model. A comparison will be undertaken between physics based models, fully data based models
and a mixture of each.

2 DATA CLASSIFICATION

Data that is typically available from real world racing yachts contains a lot of noise. Typical data
files provide no metadata which would identify when a yacht is racing, motoring to/from the race
course or simply sailing with non optimal sail trim. It is obvious that comparing a VPP result to
data describing a yacht motoring is pointless. Moreover, it is essential that the data which we use for
analysis accurately represents the performance of the yacht in question by excluding data when the
boat is not in ”"race-mode”. If sails are not trimmed optimally and/or crew positioning is not optimal
then the comparison of physics based models to the real world data is not valid. It is assumed that
when the yacht is in "race-mode” the yacht will be raced optimally i.e. the crew extracts maximum
performance from the yacht. This assumption can only be made as the available data set is from a
yacht competing in a professional level regatta. T skill level amongst a crew competing at such a
high level regatta is extremely high. If the crew were not of a high level then it would be entirely
possible that the skill factor would contribute to a higher performance prediction from the physics
based models when compared to data of a yacht being sailed sub-optimally.

2.1 Data

The data that forms the basis of this paper was gathered on a TP52 class yacht ”Spookie3” during
the 2015 TP52 Super Series Regatta in Cascais Portugal. This data is freely available from the Sailing
Yacht Research Foundation online library (Benjamin, 2015).



The data consists of log files from 8 days of competitive sailing containing a total of 193,727 data
points sampled at a frequency of 1Hz. The files consist of a total of 42 data fields including Boat
Speed (Bsp), True Wind Angle (Twa), True Wind Speed (Tws), etc.

In order to extract racing data a number of methods will be discussed. The available data was
labeled manually after rigorous analysis by the author. The data was classified as either Upwind
(UW), Downwind (DW) or Not Racing (NR). This labelled data will be used in a supervised learning
approach to both train a supervised learning model and test the accuracy of such a model. The
labelled data can also be used to assess the ability of unsupervised learning models to separate the
data into correct categories.

2.2 Supervised Classification

Traditionally for supervised classification tasks a fully labelled data set is split into two different sets
of data, namely training data and test data. The model will be given both the features and labels
of the training set in order to learn the appropriate classification model. The feature values in the
test data set are then provided to this learned model which in turn predicts the labels that should be
associated with each data point. These predictions can then be compared with the actual test labels
that were not provided to the model in order to establish the accuracy of the learned model.

In typical machine learning applications test data usually consists of 20-30% of the full dataset. The
train-test split is performed by randomly selecting points to be included in the test data set. However,
in the case of classifying yacht racing data it does not make practical sense to apply this exact
approach. This is because in practice data will be manually labelled on a day to day basis. In other
words we would have access to labelled data from say, three days of data files and we would wish to
use this data to classify a fourth day of data files. Therefore the accuracy of this type of classification
method will be highly dependant on which days are used as training data and which days are used as
test data. Test days that have similar conditions to the conditions experienced in the corresponding
training data sets will perform better than test days in different conditions to those supplied in the
training data. In order to avoid this dependence we will look at using every possible combination of
test/training days for varying amounts of training data (i.e. 1 day training data/7 days test data, 2
days training data/5 days test data).

Two main supervised classification models are explored namely Random Forests (Breiman, 2001) and
Support Vector Machine classifiers (Cortes and Vapnik, 1995).

The feature sets that were used in all the supervised classification algorithms were:

e Standard Features - [Bsp, abs(Awa), abs(Heel), Tws, abs(Leeway)]

e Enhanced Features - [Bsp, abs(Awa), abs(Heel), Tws, abs(Leeway), Forestay, Bsp/Aws, abs(Awa)*Bsp,
Tws/abs(Heel) ]

2.3 Unsupervised Classification

The labeling process required in order to perform supervised classification can be very time consuming.
Unsupervised learning may be used in order to avoid this task. Unlike supervised learning models
the desired output labels are not be supplied to an unsupervised model. In the case of yacht data
classification this means that no manual labelling of the data is required and that an unsupervised
model can learn to classify the data from only inputs.

Two of the most widely used unsupervised classification methods are K-means clustering (Forgy, 1965)
and hierarchical clustering (Rokach and Maimon, 2005).

Both the k-means and hierarchical clustering models are most often used to cluster individual data
points into respective clusters based on their similarity to other points within their cluster. However,



classifying each data-point separately fails to take advantage of the temporal nature of the yacht data.
In yacht racing a yacht tends to stay on an upwind course for a significant period of time before
turning onto another leg and remaining on that leg for another period of time. Thus, classifying a
window of data may be more beneficial than classifying individual points. This makes intuitive sense
as two windows of data each describing a yacht sailing on an upwind leg will have similar values
for features such as Twa, Heel, Bsp, etc. and should then be classified in the same cluster by the
clustering algorithm. This process of windowing the data also helps to filter the effect of noise in the
data collection process.

In reality more than one cluster will describe upwind sailing. This is the case as when the wind speed
is significantly different between two windows of data, each describing a yacht sailing on an upwind
course, then values for features within these windows will be far enough apart that the algorithm will
classify them as separate clusters.

In order to apply windowing of the data for either the k-means or hierarchical clustering algorithms
the data is stretched into a single high dimensional point. Consider a matrix A that contains a single
window of the data of length n with m different features being used for clustering. This matrix is then
mapped to a single point in R®*™ as shown:
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This single high dimensional point will then be used by the k-means or hierarchical clustering algo-
rithms to group with similar high dimensional points which each represent a window of the data.

As both K-Means clustering and hierarchical clustering are fundamentally geometrically based meth-
ods of clustering it is important to scale the features supplied to these algorithms Mohamad and
Usman (2013). This is due to the fact that, when classifying a data point, a 10 knot change in boat
speed should not be regarded as of equal importance to a 10 degree change in wind angle. There
are a number of different methods of standardization such as: min-max, Robust scaling and z-score
standardization methods. In line with the findings in Mohamad and Usman (2013) it was found that
z-score standardization performed the best on this data-set.

The features that were used in all the unsupervised classification algorithms (K-means, Hierarchical)
were:

e Standard Features - [Bsp, abs(Awa), abs(Heel), Tws]

e Enhanced Features - [Bsp?, abs(Awa), abs(Heel), Tws, abs(Leeway), Forestay, Bsp/Tws,
abs(Awa)*Bsp, Tws/abs(Heel) ]

The application of feature engineering in the enhanced features helps the unsupervised algorithm
separate the data and allows important relationships such as the ratio of Bsp to Tws to be used as an
important measure in separating the data into groups.

The output of such clustering models is that each datapoint is assigned to one of k distinct groups.
Without any further information the model does not know what label to assign to each of these
clusters. Each cluster could be inspected manually at this point and a appropriate label applied. This
method can still significantly reduce workload of labeling data as typically number of clusters required
to separate data are about 10-50 clusters. This is a significant reduction than manually labeling
thousands of data points.

A more efficient way of completing this process is to supply the algorithm with some simple parameters.
These parameters can be used by the model to decide which label CUW’, 'DW’ or '"NR’) to give each



of the k different clusters. This process is known as semi-supervised learning.

3 PHYSICS BASED MODELS

The ORC VPP is a widely used VPP in the yacht racing industry. The main purpose of VPPs is to
provide a handicap to yachts racing in fleets containing boats of varying sizes, designs and speeds. The
goal of a VPP is to accurately predict the performance of a yacht in a wide range of wind conditions.
Simple VPPs will typically use basic boat parameters such as length, breadth, sail area, etc. as well as
the true wind speed (TWS) and true wind angle (TWA) as inputs and output predictions for a yachts
speed (Bsp), heel angle and leeway angle. For conciseness the Bsp output is the main focus of this
paper, however, the same methods and models presented for predicting Bsp can be applied to model
both heel and leeway angles. The documentation for the ORC VPP is freely available ORC (2015).
This VPP uses empirical data gathered in model testing as a basis for its underlying physical models.

In order to compare the VPP to the data the VPP was run for every data point classified as racing,
taking as input the Twa and Tws from the data point and outputting predicted Bsp from the VPP.

4 DATA BASED MODELS

There are a number of available machine learning models that are suitable for this type of regression
problem. Neural Networks (NN) are a popular form of nonlinear machine learning model that is
capable of learning a nonlinear function from a set of training data. Random Forests (RF) are an
ensemble learning model that consists of a number of different decision trees that are constructed from
the training data with each tree then contributing a vote towards the desired output, in the case of
regression the average of the tree predictions is then taken to be the predicted output Breiman (2001).
The ensemble nature of random forests makes them less likely to overfit to training data than NN’s
or other forms of learning models.

In order to assses accuracy of a machine learning model it is common practice to split the available
data into a train and test set. The model is then trained on the train data-set and the test data-set
containing data points that have not been supplied to the model is then used to determine the models
ability to generalise to data which it has not seen. The splitting of the data is done by choosing
random points with the train set containing 80% of the available data and the test set containing the
remaining 20%.

Added resistance due to waves is one of the most difficult aspects of a sailing yachts performance to
capture. VPPs usually assume that the yacht is sailing in calm water. For real-time use models need
to have some information of what sea conditions a yacht is experiencing in order to give informed
predictions. Sensors detecting wave height and period do exist but are extremely rare onboard sailing
yachts. However, it is common place for a racing yacht to have an accelerometer and gyroscope
sensor fitted that can measure and record the pitch and heel of a yacht. By utilising the process of
feature engineering it is possible to transform the pitch and heel data to new features namely heel
amplitude, pitch amplitude, heel frequency and pitch frequency. This was done by identifying ” peaks”
and ”troughs” in the time-series data. The frequency and amplitude of these peaks and troughs were
then calculated and then added as respective features to the data set.

5 PHYSICS BASED LEARNING MODELS

Combining physical models with data should reduce the amount of data needed in order to achieve
good model predictions. Weymouth and Yue (2013) have shown how combining a simple physical
model with a small number of data points can improve the performance of a model in data sparse
cases. This type of model is known as a physics-based learning model (PBLM). PBLM’s utilize



physics based insights of the problem to improve the accuracy and also reduce the data dependence
of a General Learning Model (GLM).

In this work the ORC based VPP is used an an IM and both simple regression techniques as well as a
random forest are explored as potential GLMs. The features supplied to the GLM will be Twa, Tws,
pitch amplitude, heel ammplitude, pitch frequency and heel frequency. The IM takes Tws and Twa
as inputs along with boat shape parameters.

6 RESULTS

6.1 Data Classification
6.1.1 Supervised Classification

The resulting accuracy score of the supervised random forest model can be seen in Figure 1. The
accuracy score relates to simply the percentage of points in the test data that had predicted labels
equal to the actual manually assigned labels. The points in the plot relate to a type of "mean of
means”, this is due to the fact that to reduce the stochastic influence of the RF model the model was
run 10 times for each given training data with the mean accuracy taken as the score for that training
data. In order to reduce analyse the influence of using different days as training data for a fixed n
number of days each possible combination of n days was fit (10 times each) as training data with the
remaining data being used as test data. Therefore for a given n the accuracy score represents the
mean accuracy score over each possible combination of training data. The error bars represent the
standard deviation of these accuracy scores.
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Figure 1: Accuracy of supervised Random Forest classification. The RF model was fit to each possible
combination of n training days , with the remaining number of days of data being used for testing. The model
was fit 10 times to each given training data to reduce the influence of the stochastic nature of RF model.
Presented is the mean and standard deviation of the model over the different training data provided for a given
number of days of training data.



6.1.2 Unsupervised Classification

There are two main user defined parameters in the version of both k-means clustering and hierarchical
clustering used: window length and number of clusters (k). It was found that the model performance
is optimal using a window length of 40s, 30 clusters for the k-means model and 12 clusters for the
hierarchical model.

In Table 1 the results of the data classification process are presented. The unsupervised classifica-
tion models outperform the supervised classification models. For both the unsupervised models the
appropriate window length was found to be about 40 seconds.

Table 1: Summary of Classification model accuracy.

Type of Model Model Parameters Accuracy (%) ‘

Supervised RF Enhanced Features 92.0
Ndays = 7
Ngrees = 100

Supervised SVM Simple Features 92.7
n days = 7

Unsupervised K-Means  Enhanced Features 93.06
k =30
window len = 40

Unsupervised Hierarchical Enhanced Features 93.5
k=12
window len = 40

6.2 Physics Based Performance Models

Table 2 summarises the accuracy scores of the ORC based VPP. When considering Bsp the ORC based
VPP performs significantly better when compared with UW data rather than DW data. However,
when looking at the accuracy of Heel predictions the VPP is significantly more accurate at predicting
the DW Heel than UW Heel. VPP’s in general tend to overestimate both the UW speed and UW
Heel experienced by a yacht while also failing to capture when a yacht will experience planing thus
underestimating DW speed in certain conditions.

Table 2: Summary of ORC based VPP accuracy metrics. VPP outputs compared to observed steady state
values at a minimum Twa of 25 degrees.

Output Data Range RMSE MAE R’ Max error

Bsp Racing 1.61 1.264  0.361 7.14
Bsp uw 1.23 0.989  -0.79 5.99
Bsp DwW 2.079 1.706  0.044 7.14
Heel Racing 10.775  8.729 -1.629 38.698
Heel uw 13.373  12.324 -8.66 38.698
Heel DW 3.93 2.962 -0.243 30.07




6.3 Data Based Performance Models

Fitting data based models to the data shows a significant increase in the accuracy when compared
with the ORC based VPP. Figure 2 shows the comparison of Bsp models based on the R? score of
a given model on the steady-state racing data (consisting of both UW and DW data points). Even
when the machine learning models are only trained using basic features such as just Tws and Twa
all models significantly outperform the physics based VPP in predicting both Bsp and Heel. Using
just Tws and Twa as input parameters the models achieves a test set accuracy of R? = 0.856 for Bsp
predictions (compared to 0.361 for the VPP model).

The inclusion of parameters relating to the sea conditions that the yacht is experiencing into the data
based models sees a large increase in model accuracy. The test set score for predicting Bsp of the
random forest model increases from R? = 0.839 to R? = 0.949 with the addition of these motion based
features.
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Figure 2: Data based models test set accuracy score for predicting boat speed. The VPP accuracy score on
the same data is R? = 0.361

The ability of the data based models to extrapolate beyond the type of data which it was trained on
was investigated. Training data here consisted of steady state data with a Tws < 15 knots. The test
data consisted of data points with Tws > 15 knots and consisted of approximately 30% of the total
dataset. Figure 4 shows how the accuracy of the data based models for extrapolation is significantly
worse than when the model learned on data similar to the data it was tested on. This is a drawback
to using data based models which may be improved upon using physics based learning models in the
future. However, the support vector machine model is seen to generalise much better than the other
data based models and performs almost as well as the Windesign VPP and still significantly better
than the ORC VPP on this data. It should be noted that the ORC VPP is also significantly less
accurate on this set of high wind speed data compare to lower wind speeds. The RMSE of the ORC
VPP is 2.19 knots for high wind speed data compared to 1.34 knots for the data point with Tws <
15 knots.
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Figure 3: Comparison of Polar plot generated from Random Forest model to the polar plot generated from the
ORC VPP.
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Figure 4: Data based Bsp prediction accuracy tested on data outside the learning range. Test data for all
models consists of data points wih Tws > 15 knots.

6.4 Physics-Based Learning Models

In Figure 5 the use of a PBLM model can be seen to greatly increase the accuracy of a model using a
basic GLM such as ridge regression when the number of data points is small. In the case of using the
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RF as a GLM, there is only a slight increase in model accuracy in using a PBLM model even when
the number of data points is small.
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Figure 5: Explained variance score of PBLM models for varying number of available data points. At
each training size the available data is randomly split into train and test sets (with the required number
of points in training set). This is done at random 35 times for each training size. The scatter points
represent the individual model score for each of the random training sets. The solid line represents
the median of the model scores for a given training set size.

7 CONCLUSIONS

This work has shown the advantages of using data based models for modeling a yachts performance
when compared to semi-empirical methods. Simple data based methods such as linear regression were
shown to outperform the VPPs, however, more advanced methods of regression such as random forests
were shown to perform significantly better than using linear regression on this type of data.

The power of feature engineering was shown by the ability to transform the pitch and heel data of the
yacht into features that the machine learning models can use as replacements for wave data. This has
the potential to greatly increase the performance of using such a model for real-time predictions.

A brief overview of using unsupervised machine learning in the pre-processing of yacht racing data is
presented and is shown to be a very useful tool in reducing the amount of time it takes to group a
data set into distinct groups. This method of classification can be generalised to many other forms of
real world data that is captured in the form of a time series.

The use of PBLMs is explored in use with real world sailing data. It is shown however that a physical
basis does not greatly improve the accuracy of the model. A more accurate IM or less noisy data
points may be needed for PBLM to be utilised more effectively.

10



References

S. Benjamin. Tp52 performance data - spookie3 - superseries cascais, 2015.
http://library.sailyachtresearch.org//images/library/Spookie3/Spookie’,20TP52%,20Cascais’%20Dat

C. Bohm. A velocity prediction procedure for sailing yachts with a hydrodynamic model based on
integrated fully coupled ranse-free-surface simulations. 2014.

L. Breiman. Random forests. Machine learning, 45(1):5-32, 2001.
C. Cortes and V. Vapnik. Support-vector networks. Machine learning, 20(3):273-297, 1995.

E. W. Forgy. Cluster analysis of multivariate data: efficiency versus interpretability of classifications.
biometrics, 21:768-769, 1965.

I. B. Mohamad and D. Usman. Standardization and its effects on k-means clustering algorithm.
Research Journal of Applied Sciences, Engineering and Technology, 6(17):3299-3303, 2013.

ORC. Orc vpp documentation 2015. Technical report, Technical report. 118, 120, 2015.

L. Rokach and O. Maimon. Clustering methods. In Data mining and knowledge discovery handbook,
pages 321-352. Springer, 2005.

G. D. Weymouth and D. K. Yue. Physics-based learning models for ship hydrodynamics. Journal of
Ship Research, 57(1):1-12, 2013.

11



