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Abstract. The design and analysis of vessels and wave energy converters requires an under-
standing of the nonlinear loads and responses in stochastic waves. A novel mesh-free potential
flow methodology is introduced for simulating the response of a floating body with nonlinear
Froude-Krylov and hydrostatic effects. The nonlinear fluid forces are cast as volume integrals
using Fluid Impulse Theory (FIT). These volume integrals are robustly evaluated using Quasi-
Monte Carlo (QMC) integration over an implicit geometry without the need to discretize the hull
or free surfaces. The resulting nonlinear equation of motion is solved with an impulse-adapted
Chebyshev Picard iteration scheme (I-MCPI). By approximating the nonlinear momentum im-
pulse with a Chebyshev series, the time derivative can be analytically computed, circumventing
the numerical sensitivity of finite-differencing. The solution is shown to converge over short
parallelized subintervals, and sequentially concatenated to form long time records.

1 INTRODUCTION

The last decade has seen a significant development of high-fidelity computational methods
for marine hydrodynamics and seakeeping. Despite these advances, computationally-efficient
potential flow methods capable of capturing the dominant nonlinearities remain invaluable for
design optimization and analysis tasks that require ensembles of simulations over broad param-
eter spaces. The dominant potential flow hydrodynamic nonlinearities in moderate conditions
are the incident wave Froude-Krylov and hydrostatic effects.

While there are many approaches to modeling the nonlinear Froude-Krylov and hydrostatic
effects, they are not without compromises. The primary source of computational effort arises
from the computation of the instantaneous wetted body surface [1]. For general bodies requiring
a discrete mesh-mesh intersection, this is well-known to be a numerically sensitive and challeng-
ing task [2]. For this reason, two-dimensional and strip theory codes for ship seakeeping analysis
have remained robust and useful, despite the simplification of the ship hydrodynamics [3]. Ef-
ficient and robust three dimensional analytic expressions of the nonlinear hydrodynamic force
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integrals have been developed recently for wave energy converters, but are limited to axisym-
metric body surfaces [4].

Even with geometric simplifications or robust forces, these equations of motion can be chal-
lenging to advance robustly in time. Small time steps needed for stability and accuracy can lead
to prohibitively long simulation times. In particular, time derivatives may introduce noise or in-
stability, leading to some to introduce auxiliary potentials to circumvent temporal differentiation
[5].

A new perspective for addressing these challenges is introduced in this work. Expressions for
the dominant Froude-Krylov and hydrostatic nonlinearities over the instantaneous submerged
volume are developed using FIT. The loads are numerically evaluated by a robust QMC in-
tegration scheme over the blurred-boundary signed distance function (SDF) representation
of an arbitrary body geometry. This scheme avoids discretizing any surfaces, circumventing
numerically-sensitive mesh-mesh intersections. A Chebyshev Picard algorithm is developed to
robustly differentiate the nonlinear fluid impulses and evolve the simulation forward in time.
The convergence and sensitivity behavior of this method is discussed.

2 METHODOLOGY

The geometry is described in a body-fixed coordinate system (BCS) x ≡ (x, y, z), whose
origin at rest design conditions is centered vertically on the calm-water plane. The displacement
of the BCS is defined with respect to an inertial global coordinate system (GCS) X ≡ (X,Y, Z)
by a displacement vector ξ. The equation of motion is given by Newton’s Law, which for this
study, is simplified to translation only,

M ξ̈ = F FK + FHs + FRad + FDiff + F gravity (1)

2.1 Fluid Impulse Theory Hydrodynamic Forces

Figure 1: A body experiencing large amplitude response motions in irregular waves. The total
nonlinear free surface ζT is denoted with the solid blue curve, while the incident wave free surface
ζI is denoted by the dashed red curve. SB is the exact instantaneous wetted body surface bound
by ζT , while SW is the wetted body surface bounded by the incident wave free surface. SI is
the incident wave free surface interior to the body and SE is the incident wave surface exterior
to the body.
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Assuming the fluid is inviscid and the flow is incompressible and irrotational, the fluid velocity
can be defined as the gradient of a scalar velocity potential v ≡ ∇Φ. The nonlinear fluid forces
acting on a body undergoing large amplitude motions are expressed as the time derivative of
the velocity potential integrated over the instantaneous wetted surface,

−ρ

∫

SB

[

∂Φ

∂t
+

1

2
∇Φ ·∇Φ+ gZ

]

nds = −ρ
d

dt

∫

SB+ST

Φnds− ρg

∫

SB+ST

Znds (2)

The left hand side of equation (2) is the integral of the Bernoulli pressure over the instantaneous
wetted body surface. The total velocity potential Φ can be decomposed into the incident wave
potential, and the diffraction and radiation disturbances, Φ = φI + φD. The incident wave
represented by a superposition of deep water regular waves with amplitudes drawn from a
spectrum and uniform random phases, and Wheeler stretching is employed to extend the wave
kinematics above the Z = 0 plane [6]. The total force is decomposed accordingly, (see [7] for
details),

F =− ρg

∫

SW+SI

Znds− ρ
d

dt

∫

SW+SI

φInds− ρ
d

dt

∫

SW

φDnds (3)

− ρ
d

dt

∫

ST+∆S

φDnds− ρ
d

dt

∫

ST+∆S+SE

φInds− ρg

∫

ST+∆S+SE

Znds

The integration surfaces are depicted in Figure (1), and ∆S is the differential surface between
SB and SW .

In this model, the nonlinear Froude-Krylov and hydrostatic effects are assumed to be the
dominant nonlinearities, which are represented by the first and second terms on the right-hand
side of (3), respectively. The surface integrals in defining these two components are defined over
the closed wetted surface formed by the intersection of the body and incident wave surfaces. By
virtue of Gauss’s theorem, the nonlinear hydrostatic and FK components can be expressed as
volume integrals,

FHs = ρg

∫

∀W

1 k̂ dv = ρg∀W (t) k̂ (4a)

F FK = ρ
d

dt

∫

∀W

∇φIdv (4b)

where ∀W (t) is the instantaneous wetted volume bounded by SW + SI . This transformation
yields an intuitive nonlinear generalization of Archimedean hydrostatics.

The radiation and diffraction body disturbances are contained in the third term of equation
(3). A fully nonlinear treatment, comes with a considerable increase in computational complex-
ity. As such, the body disturbances will be assumed to be small and approximated as linear.
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The linear frequency-dependent response of the radiation component is expressed in the time
domain via the Cummins impulse response convolution [8],

FRad = −A∞ξ̈ −
t

∫

−∞

κ (t− τ) ξ̇ (τ) dτ (5)

where A∞,ij = Aij(ω → ∞) is the infinite frequency added mass, and the impulse response
kernel κ(τ) can be computed from the linear added mass and damping coefficients provided by
any linear panel code, e.g. WAMIT [9]. Details of the implementation can be found in [10].

The corresponding linear diffraction problem results in a set of complex-valued coefficients
XD,i (ω), and the corresponding linear diffraction force in terms of an incident sinusoidal wave
of amplitude A and frequency ω may be evaluated directly as,

FDiff = |XDiff (ω)| sin

[

ωt+
ℑ {XDiff (ω)}

ℜ {XDiff (ω)}

]

(6)

The fourth, fifth, and sixth terms in equation (3) are the free surface impulses which are
neglected under the small-disturbance assumption.

2.2 Implicit Surface Representation

The first step in the numerical computation of the nonlinear forces (4) is to evaluate the
bounds of the volume integrals, which involves an intersection between the instantaneous body
position and the ambient wave free surface. The implicit surface S is defined as the zero level set
of a scalar function, which leads to a convenient behavior that the sign of the function changes
across the boundary [11]. The benefit of the implicit surface approach is that it immediately de-
termines whether a point p is inside or outside the enclosing surface S. Therefore, set operations
such as unions and intersections are straightforward.

I∀ (p) =

{

1 DS (p) ≤ 0

0 DS (p) > 0
(7)

A special level set function is the signed distance function, denoted as DS (p) which is em-
ployed here. The magnitude of DS evaluated at p is the shortest Euclidean distance from p

to the surface S (visualized for a circle and square in Figure 2). The SDF for useful primitive
shapes, such as spheres, cylinders, prisms and cones, exist in closed analytical form which are
common in marine engineering applications. SDFs can also be constructed from general dis-
crete mesh geometries thereby enabling the broader extension of this approach to complex body
shapes [11].

2.3 Quasi-Monte Carlo Integration

It is well known that in the deterministic sense, numerically integrating a function over a def-
inite volume is more expensive than integrating the corresponding surface integral transformed
via Gauss’s Theorem. Quasi-Monte Carlo integration (QMC) [12] is employed to both relieve
this curse of dimensionality and leverage the implicit geometry representation.
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Figure 2: Contours of a signed distance function of a circle Dcircle (p) =
√
p · p−R and square

Dsquare (p) =
√

max (0, q1)
2 +max (0, q2)

2 + min (0,max (q1, q2)) with q = |p| − L/2 and side
length L.

The classical Monte Carlo integration (MC) invokes the insignt that the expectation operator
is simply an integration operator over a domain, which can be approximated as a statistical
average of N samples of the integrand,

I =

∫

Ω

f
(

x′
)

dx′ ≈ V

N

N
∑

i=1

f
(

x′
i

)

(8)

where V is the volume of the cube Ω. The result is a convergence rate of O
(

1/
√
N
)

independent

of dimension.
QMC builds on MC, by selecting samples from a deterministic low-discrepancy sequence

rather than a pseudo-random series. A quality low discrepancy sequence, such as the Sobol
sequence used here, is designed to cover the space more evenly for a given number of points N .
Notably, it can be shown that the QMC convergence rate approaches O (1/N)[12].

QMC is performed over the unit cube with coordinates (u, v, w), requiring a change of vari-
ables in equations (4). Consider a body of arbitrary shape contained within its GCS Axis-Aligned
Bounding Box (AABB) with verticesXAABB. It is straightforward to change variables, rescaling
(u, v) in the unit cube to the AABB. Invoking the mathematical definition of the single-valued
free surface, the w-coordinate of the unit hypercube is mapped to the z-coordinate of the AABB
fluid domain,
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X = XAABB,min + u (XAABB,max −XAABB,min) (9a)

Y = YAABB,min + v (YAABB,max − YAABB,min) (9b)

Z (X,Y ) = ZAABB,min + w (ζI (X,Y )− ZAABB,min) (9c)

In order to make an integral over the scaled AABB equivalent to the integral over ∀W , the
nonlinear FIT integrands are multiplied by an indicator function I∀ (X) defined in equation (7),

FHs (t) = ρg∆x∆y

∫∫∫

u,v,w∈[0,1]

I∀ (X) [ζI (x, y)− zmin] dwdvdu (10a)

IFK,1,2,3 (t) = ρ∆x∆y

∫∫∫

u,v,w∈[0,1]

I∀ (X) (∇φI) [ζI (x, y)− zmin] dwdvdu (10b)

The resulting scaling and sampling is visualized in Figure 3 with 4096 Sobol samples.

Figure 3: Schematic of 4096 QMC Sobol samples inside the AABB, with green circles represent-
ing I∀ = 1 and blue circles in the fluid domain but outside the body (I∀ = 0).

2.4 Hyperbolic Tangent Boundary Blur

Moskowitz and Caflisch note that when the integrand is discontinuous, the favorable conver-
gence rate of QMC is often observed to reduce to the convergence rate of MC [13]. As a result,
the conditions prescribing the QMC error bound is violated. To mollify the sharp discontinu-
ity at the body boundary and improve the convergence rate of equation (10), equation (7) is
exchanged for a continuously differentiable hyperbolic tangent indicator function,

Is (p) =
(1 + tanh [−ϑDS (p)])

2
(11)

This smooth indicator has the physical effect of blurring the boundary, visualized in Figure 4.
The distinct advantage of this framework is the SDF representation, which enables equation
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(11) to be evaluated very efficiently. The parameter ϑ corresponds inversely to the “blur thick-
ness” and can be selected to provide a satisfactory compromise between absolute accuracy and
convergence rate.

(a) Schematic (b) 2D illustration

Figure 4: (a) Visual description of hyperbolic tangent boundary blur applied to an integrand
function f(x). (b) Visualization of the boundary blur on a 2D circle.

2.5 Impulse-Modified Chebyshev Picard Iteration

Advancing the equation of motion of time is performed by extending the second-order cas-
cade Modified Chebyshev Picard Iteration (MCPI) scheme [14] to equations containing mo-
mentum impulses. A key attribute of this method is approximating time-dependent quanti-
ties over the Picard interval with a Chebyshev polynomial basis (of the first kind) [15]. Fur-
thermore, Chebyshev polynomials evaluated at the Chebyshev-Gauss-Lobatto (CGL) nodes,

τj = − cos
(

jπ
M

)

, m = 0, 1, 2, . . . ,M , exhibit a discrete orthogonality and minimize spurious

oscillations due to Runge’s phenomenon.
A critical aspect is computing the time-derivative of the nonlinear Froude-Krylov impulse.

Integrals and derivatives of Chebyshev polynomials are expressed in terms of the polynomials
themselves. The new I-MCPI scheme exploits this relationship to circumvent noise-amplifying
finite differences, end-effects and Runge’s phenomenon, which when differentiated, may lead to
potentially disastrous errors.

To sketch the method, the nonlinear equation of motion containing the FIT nonlinear hydro-
dynamics over a finite interval t0 ≤ t ≤ tf are expressed as,

ẍ (t) = f (t,x, ẋ) +
d

dt
I (t,x, ẋ) , x (t0) = x0, ẋ (t0) = v0 (12)
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where f contains the linear and nonlinear forces and I contains the Froude-Krylov impulse. A
change of variables is made to the Chebyshev interval −1 ≤ τ ≤ 1, letting t = w1 + w2τ with
w1 = (t0 + tf )/2 and w2 = (tf − t0)/2. Applying a change of variables,

v =
dx

dτ
= w2

dx

dt
(13a)

dv

dτ
= g (τ,x, ẋ) = w2f (t,x, ẋ) +

d

dτ
h (τ,x,v) (13b)

h (τ,x (τ) , v̇ (τ)) = I (w1 + w2τ,x (w1 + w2τ) , ẋ (w1 + w2τ)) (13c)

Integrating both sides of equation (13b), the velocity and displacement at the i-th Picard update
is computed as,

vi (τ) = v0 +

τ
∫

−1

{

g
(

s,xi−1,vi−1
)

+
d

ds
h
(

s,xi−1,vi−1
)

}

ds (14a)

xi (τ) = x0 +

τ
∫

−1

vi (s) ds (14b)

using the i− 1 approximation of the displacement and velocity.
Traditional MCPI fits a Chebychev series to the displacement of order N , a second series of

order N − 1 to the velocity, and a third series of order N − 2 is fit to the integrand. I-MCPI
extends this by also fitting an order N − 1 Chebyshev series to the nonlinear impulse, noticing
it will be differentiated prior to integration,

xi (τ) ≈ 1

2
αi

0T0 (τ) +αi
1T1 (τ) + · · ·+αi

N−1TN−1 (τ) +
1

2
αi

NTN (τ) (15a)

vi (τ) ≈ 1

2
βi
0T0 (τ) + βi

1T1 (τ) + · · ·+ βi
N−1TN−1 (τ) (τ) (15b)

g
(

τ,xi−1,vi−1
)

≈ 1

2
γi−1
0 T0 (τ) + γi−1

1 T1 (τ) + · · ·+ γi−1
N−2TN−2 (τ) (15c)

h
(

τ,xi−1,vi−1
)

≈ 1

2
ζi−1
0 T0 (τ) + ζi−1

1 T1 (τ) + · · ·+ ζi−1
N−1TN−1 (τ) (15d)

The key development is that equation (15d) is analytically differentiated over the Picard interval,

d

dτ
h
(

τ,xi−1,vi−1
)

≈
N−1
∑

k=1

ζi−1
k

dTk (τ)

dτ
(16)

= ζi−1
2 (1) + ζi−1

3





2
∑

j=0,even

Tj (τ)



+ ζi−1
4





3
∑

j=1,odd

Tj (τ)



+ . . .
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Invoking the discrete orthogonality property, the coefficients of the integrand can be computed
independently as,

γi−1
k =

2

M

M
∑

j=0

“g
(

τj ,x
i−1 (τj) ,v

i−1 (τj)
)

Tk (τj) , k = 0, 1, . . . , N − 2 (17a)

ζi−1
k =

2

M

M
∑

j=0

“h
(

τj ,x
i−1 (τj) ,v

i−1 (τj)
)

, k = 1, 2, . . . , N − 1 (17b)

where the double prime “ denotes the first and last terms of the summation are multiplied by
1
2 . Substituting equations (15) and (16) into (14a) and (14b) yields the Picard updates in terms
of the analytic Chebyshev series,

vi (τ) =

N−1
∑

k=0

‘βi
kTk (τ) = v0 +

τ
∫

−1

[

N−2
∑

k=0

“γi−1
k Tk (s) +

N−1
∑

k=1

ζi−1
k

dTk (τ)

dτ

]

ds (18a)

xi (τ) =

N
∑

k=0

‘αi
kTk (s) = x0 +

τ
∫

−1

[

N−1
∑

k=0

‘βi
kTk (τ)

]

ds (18b)

where the single prime ‘ denotes only the first term in the summation is multiplied by 1
2 . By

virtue of the integration, differentiation and discrete orthogonality properties of Chebyshev
polynomials, these operations to compute the velocity and displacement coefficients βi and αi

may be carried out in a compact matrix form, which has been omitted for brevity, and can be
found in [14] for traditional MCPI and [10] for I-MCPI.

Finally, note that the integrand evaluation in equation (18) are only dependent on the pre-
vious iteration’s position and velocity estimate. Each Picard update then occurs over the finite
interval simultaneously. Therefore, the computationally-expensive integrand evaluations may
be parallelized to reduce the computation time. Long time record simulations can be com-
puted by partitioning a long record into many short intervals, which are solved sequentially and
concatenated together.

3 RESULTS

The I-MCPI algorithm and hydrodynamic response simulation has been implemented in the
Julia language using multi-threading in time. The QMC integration is performed via calls to
the Cuba library in C [16].

3.1 Convergence of Boundary Blur Error on Volume Integrals

A spatial integration convergence test is performed on the number of QMC samples N and
to assess the magnitude of the error induced by the boundary blur on body volume. The
performance is assessed on a 4-meter diameter sphere, displayed in Figure 5. The sharp boundary
QMC denoted by black circles behaves more erratically for reasonable N , despite achieving the
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smallest error with increasing N . Small and moderate values of ϑ (thick blur) converge rapidly
to the exact blurred-volume asymptotic error. For moderate blur, ϑR ≈ 20, the error is less than
1% of the true volume. The thickness of the region 0.01 ≤ Is ≤ 0.99 can be used to estimate a
lower bound on ϑ, given as 4.595/ϑR ≪ 1, which appears conservative.

Figure 5: Convergence of the QMC volume estimate of a sphere with boundary blur over various
thickness parameters ϑ. The true volume error convergences rapidly to the asymptotic error
introduced by ϑ.

3.2 Sensitivity of I-MCPI

A sensitivity study was performed on the I-MCPI algorithm parameters N the polynomial
order and ∆t the Picard interval length. Simulations were run using a slender circular cylinder
with radius 2 meters, draft 8 meters and overall length of 12 meters free to move in heave,
with linear hydrodynamics computed by WAMIT, and the linear responses computed using a
traditional ODE solver [17]. The response motions in a regular wave of unit amplitude and
frequency 0.6 radians per second are shown in Figure 6. For sufficiently short intervals (∆t ≤
1 =⇒ ∆t/T ≤ 0.1), the accuracy of the solution appears insensitive to the polynomial order.
For ∆t = 5, 10 seconds, the simulation did not succeed. In the context of broader modeling
errors, it should be noted that stable simulations can be achieved across broader parameters,
while accurate results may require further parameter tuning for a specific problem.

3.3 Long Time Record

To illustrate the stable and robust behavior of the I-MCPI scheme, we simulate a 4 meter
diameter heaving sphere for 690 seconds. Figure 7 illustrates the response motions. A 10th-order
Chebyshev series was with interval lengths ∆t = 1.0 and ∆t = 1.5 were used. The incident wave
is a JONSWAP sea state with a significant waveheight of Hs = 4 meters and peak period of
Tp = 12 seconds. In these conditions, the sphere is expected to behave as a wave-follower and
according to Giorgi and Ringwood, linear theory is expected to perform well, providing a useful
comparison [?]. The new methodology is seen to advance the simulation forward in time in a
stable manner, and overlaying the linear theory response motions as expected.
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Figure 6: Nonlinear heaving cylinder illustrates I-MCPI is most sensitive to the interval length.
Increasing the Chebysehv order appears as coincident response signals.

Figure 7: Long time record simulation of a heaving sphere, illustrating the stable behavior of
the I-MCPI algorithm and robust evaluation of the nonlinear hydrodynamics.

4 CONCLUSIONS

A new methodology has been introduced to study the nonlinear loads and response motions of
floating bodies in irregular waves. An implicit SDF representation, combined with Quasi-Monte
Carlo integration algorithms is implemented to evaluate the nonlinear FIT Froude-Krylov and
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hydrostatic loads in volume form, enabling arbitrary bodies to be simulated. The critical time
derivative of the Froude-Krylov impulse is analytically computed using an extended Chebyshev
Picard iteration algorithm, which permits parallel evaluation of the nonlinear equation of mo-
tion integrand in time, and may include more complex dynamics, such as the power take off
mechanism of a wave energy converter. A boundary blurring smooth indicator function is shown
accelerates convergence for moderate values of ϑR ≈ 20 − 40, while keeping the volume error
less than 1%. The I-MCPI algorithm is shown to be robust over long time records, with the
subinterval length being the more sensitive of the two parameters. While simple geometries were
presented in this study, ongoing work is focusing on more complex bodies and wave environ-
ments to fully characterize the behavior of the methodology, and extensions to include additional
hydrodynamic nonlinearities.
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