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ABSTRACT

Analytical solutions for numerical wavetanks are limited presently to a simple bathymetry and third
order accuracy. Furthermore, tanks are generally characterised using linear transfer functions to relate
the wavemaker forcing amplitude to wave elevation at a probe located in the wavetank. This paper
reports on a numerical wavetank implemented using the OpenFOAM software package. The aim of
the research is to train neural networks to represent non-linear transfer functions mapping a desired
wave surface-elevation time-trace at a probe to the wavemaker input required to create it.

Keywords: computational fluid dynamics; neural networks; machine learning, OpenFOAM; tank
transfer function.

NOMENCLATURE

F Tank transfer function
u Time series of wavemaker input heights in metres
v Time series of observed probe elevations in metres
Ui(t) Randomly generated wavemaker input amplitude
Um A constant, defining wavemaker amplitude

ANN Artificial Neural Network
MAC Multiply ACcumulate operations
MLP Multi-layer Perceptron
MSE Means sequared error loss function
NARX Non Linear Auto Regressive Exogenous
RNN Recurrent neural networks
TTF Tank Transfer Function

1 INTRODUCTION

Waves are of particular interest in marine research as they play a key role in understanding fluid-
structure interactions. Wave tank test facilities are used to generate desired water waves in order to
model certain sea-states in a controlled environment. Both physical and simulated wavetanks exist,
each with their own merits. However, in all cases wavemakers are required and some method to control
wavemaker action to obtain a desired sea state or time trace of surface elevation in the tank. Early work
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employed analytical solutions relating piston or paddle motion amplitude to surface elevation Dean &
Dalrymple (1991). Industry standard is now the characterisation of a wavetank using tank transfer
functions (TTF) Masterton & Swan (2008), describing the ratio of surface elevation to wavemaker
amplitude and phase for each frequency component. Even for a flat bathymetry, non-linear extensions
are often required for anything beyond very small amplitude waves to take into account bound waves
and wave-wave interaction. Significant progress was achieved by extension to second order Schäffer
(1996), but despite further progress analytical solutions are still limited in their range of applicability
and no single method encompassing all features relevant in applied ocean and coastal research exists
Eldrup & Lykke Andersen (2019), Khait & Shemer (2019), Khait (2020). Recently, large collaborative
projects in offshore wind Robertson et al. (2020) and wave power Ransley et al. (2020) independently
identified a need for better accuracy in the reproduction of a given surface elevation time trace in
numerical simulations.

An artificial neural network (ANN) is a mathematical structure represented as a set of interconnected
nodes, with the connections called neurons. Different types of neural network can be distinguished by
the way in which the nodes are connected. These nodes are in fact numeric values and the connections
are multiply-accumulate operations (MAC) which are executed in sequence, corresponding to linking
the neurons together. The result of each operation is used as input to an activation function which
decides whether the result is fed forward to the next stage, or not, and different choices exits for the
activation function. In addition, each MAC operation has several weights which are computed during
the training phase.
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Figure 1. Geometric layout for the numerical wavetank.

ANNs can function as universal function pproximators and have been shown to be capable of solving
differential equations. In our work we apply one type of ANN, the multi-layer perceptron to solve the
Navier Stokes equations in our numerical wavetank. We show that it is possible to accurately map a
desired wave-elevation time-series, at a measurement probe position, to the wavemaker input required
to generate this time series. In the literature there is only one known application of Neural Networks
to predict wavemaker inputs based on specific wave traces for calibration. The work done by Schmitt
(2017) experimented with the first use of Non-Linear Auto-regressive Exogenous input (NARX) Neural
Networks for the calibration of waves close to the breaking limit of a numerical wavetank based on
a method later published in Schmitt et al. (2020). For model training, waves were generated with
random wavemaker input. The time-trace of the surface elevation of the resultant waves were used
as model input and the given random wavemaker input was used as the desired model output. The
results of these experiments indicate that NNs are a valuable tool for wavemaker calibration and
could yield better results with further experimentation. One issue in the application of NN to wave
calibration identified, was the short ”memory” or ”vanishing gradient”, which has been investigated
by Diaconescu (2008). The influence of an item in sequence weakens as the sequences goes on. This is
problematic for learning long sequences, as long patterns and sparse temporal dependencies may not
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be recognised.

Neural networks methods have been used by other researchers in the field. Fu et al. (2007) uses
Recurrent Neural Networks (RNNs) to predict statistical properties of water wave amplitude time
traces as a function of the wavemaker parameters (blower RPM and frequency). While they only
predicted statistical properties of the wave produced and not a specific time-series, this still shows
the promise of RNNs in predicting water waves. A novel neural network modelling approach has
been proposed by M. Raissi, P. Perdikaris, and G. Karniadakis (2019). This proposal presents the
idea of Physics Informed Neural Networks to solve differential equations, giving an example of wave
propagation. In this method, the laws of physics are invoked to constrain calculated values to a
suitable range. This method may be suitable for application to the Navier-Stokes equations.

The layout of this paper is as follows. In the next section we explain the methodology that we have
implemented to perform our numerical experiments. Section 3 presents the results of our experiments
including application to a non-linear case. The paper concludes with section 4 where we summarise
the findings of our work and look towards future applications of it.

2 METHODOLOGY

2.1 Function approximation

Following FriedmannFriedman (2001), we may state the problem of finding the inverse of the non-
linear transfer function in the following way. We have an output variable Ui, the required wavemaker
function, defined as a function at a discrete set of n time points, ti. This is dependent on the function,
F (hi, ti), the form of which is unknown. The function depends on the height of the probe amplitude,
hi at time ti and represents the inverse of the tank transfer function.

However, we have a vector v which is a set of n observations (hi, ti) i = 1, n at the probe to which we
can associate a vector U of n wavemaker inputs from a previous time interval. We know that these
inputs ad outputs are related by equation (1)

F (v)→ u (1)

The universal approximation theorem for neural networks asserts/states? that we can use the input
and output vectors u,v to find an approximation for the unknown function F in equation (1) for a
vector of observations, u, to a unique output vector, v, expressed in equation 1.

2.2 Generating training data

The work reported in this paper uses the numerical wavetank (NWT) shown in figure 1 for the
preparation of suitable training data. The numerical wavetank employed was based on the OpenFOAM
based methods described in detail in Windt et al. (2019), Schmitt et al. (2020). While a number of
free surface methods are available, we chose the interFoamsrc volume-of-fluid solver for maximum
flexibility. The wavemaker imposes vertical acceleration to the fluid, a numerical wave probe records
resulting surface elevation at a distance of 3m. Beaches of 1.5m length cancel reflections, the water
depth is 0.25m. We need to prepare multiple distinct instances of the input and output vectors u,v,
defined in the previous section in order to generate sufficient data with which to train the neural
network models. Figure 2 presents the workflow for this step.

Random wavemaker input traces were generated by summing up individual contributions for each
frequency f using the formula,

Ui(t) =

Nr∑
k=1

Um
Nr

sin

(
2π

T (k)
t − φ(k)

)
(2)
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Figure 2. Illustration of the work flow for generation of training data.

A Tukey filter was applied to the resulting time trace to ensure wavemaker input began with zero
amplitude, avoiding shock-waves in the numerical wavetank.

This process was repeated multiple times to define a set of samples. Each sample, ui was then used as
input to the OpenFOAM program for the wavetank configuration defined earlier in this paper. The
computed surface elevation at the probe, for this input, was recorded as the output from OpenFOAM
producing an instance vi. The workflow in figure 2 can be repeated to produce a training set of
arbitrary size.

2.3 Training the neural network model

We have used the multi-layer perceptron (MLP) model of neural networks for the results that we
report in this paper. There are multiple variability points, known as hyper-parameters, in an MLP
model. These include the number of layers used, the number of nodes per layer and the activation
function used at each layer. Varying these parameters changes the performance of the model. A
standard technique is to search over multiple values of the hyper parameters to find the model which
best fits the data. Model fitting for each set of hyper-parameters is independent of every other set,
that is embarrassingly parallel. This process generally requires large amounts of compute time, an
aspect which makes the use of a HPC compute facility very attractive.

Hornik (1991) showed that the multilayer feed-forward architecture gives neural networks the potential
to be universal approximators. The author showed that as long as the activation function is continuous,
bounded and non-constant, then continuous mappings can be learned uniformly over compact input
sets. The classical form of the universal approximation theorem for arbitrary width and bounded
depth shows that a feed forward neural network is capable of approximating any well-behaved function
Hassoun (1995).

2.4 Validation of the model

. It is customary to use k-fold cross validation in order to remove bias in the training data. In our work
we split the data samples on an 8 : 2 ratio of training to test samples. The members of each set are
chosen randomly. This process is repeated multiple times and the model giving the best performance
is chosen.
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Figure 3. Training and validating the neural network models.

A further check on the accuracy of our method is illustrated in figure 3. Once a neural network model
has been chosen, we can take the wavemaker input that is predicted as required to generate a given
time profile at the probe and feed this as input to the numerical wavemaker. The computed time
profile at the probe can be compared to that which was fed to the neural network to produce the
wavemaker input.

3 RESULTS

We prepared 1000 samples of wavemaker input, each of 30s duration, using equation 2) with the
parameters defined in table 1.Note that we used two different values for the maximum wavemaker
height, Um. We first report on the case where Um = 1. This corresponds to the creation of waves with
relatively small heights at the wavemaker as shown on the y-axis of figure 4. In the later part of this
section we report on the case of generating much larger amplitude waves using Um = 50. Figure 4

Table 1. Values used in equation (2 to produce the wavemaker time traces for the neural network model.

Parameter Description Value
T Time in seconds [0.7 : (1.8s)]
Nr Number of realisations 1000
Um Constant 1 or 50
t Time in seconds [0, . . . , 30]s
φ(k) Random phase [0, 2π]

presents an example of the input to the wavemaker and subsequent computed surface elevation of the
probe. The flat line to the left of the surface elevation plot represents the time delay between wave
generation starting at the wavemaker and the arrival of the first wave at the probe.

The most time intensive part of the computation is the search over the space of hyper parameters
seeking to find a minimum in a chosen loss function. Fortunately the values taken by the hyper
parameters are denumerable rather than continuous. In our work we have used the mean square error
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Figure 4. The lower figure shows the height of the wavemaker as a function of time feeding the simulations
using OpenFOAM. The upper figure shows computed surface elevation at the probe. The values on the y-axes
are in metres and the x-axes in seconds.

function, that is we compute the mean of squares of errors between the observations and the predictions
during the training phase. By construction, this search can only find a local minimum for the ANN
representation. It is this property which leads to the use of large amounts of CPU time, that is to
search over as large a space of hyper parameters as reasonably possible. Figure 5 shows the computed
error function for variations in the number of nodes per layer when using two layers. Table 2 shows
the set of hyper parameters that we identified after an extensive search, using the mean squared error
function. In the search, three activation functions were tested: Rectified Linear (ReLU), Hyperbolic
Tangent (tanh) and Sigmoid. The results showed that all three activation functions reached a point
of stagnation and convergence at around 350 epochs with a Mean-Squared Error of approximately
0.0033.

Table 2. Optimal values for the hyper-parameters of the neural network MLP model. These were obtained by
a grid search over multiple parameters.

Parameter Value
Training epochs 350
Learning rate 0.001
Hidden layer 1 nodes 310
Activation function tanh
Hidden layer 2 nodes 310
Activation function linear
Loss function MSE
Temporal resolution 0.1s

Following the validation process discussed in the previous section and presented in figure 3, reproduced
the probe height accurately across the range of time points. The mean squared error over a typical
time trace was 3.25 · 10−7. Figure 6 is an example comparing the two traces at the probe. After this
initial demonstration of the fundamental suitability of the method, a second set of data was generated
following the method described above, but with the parameter Um set to 50. A time domain analysis
of the resulting surface elevation traces was performed using custom written GNUoctave Eaton et al.
(2020) code as follows:

• depth h is the mean value of the surface elevation trace

• Find zero-crossing times of surface elevation minus depth

• Iterate over every second zero-crossing time and find max and min values for given interval
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Figure 5. Computed mean squared error function as a function of the number of nodes in the two hidden
layers for the neural network described in text

Figure 6. The black line is the probe elevation input to neural network model to infer the wavemaker input
used to create it. When this is input to OpenFOAM, the red line is the calculated elevation of the probe.
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• Period τ is then the overall intervall length

• wave height H is the sum of the magnitudes of maximum and minima values in each interval

The values for each wave are non-dimensionalised with gravitational acceleration g and wave period τ
as pairs of H

gτ2
and h

gτ2
and plotted as a point cloud over the well known plot highlighting the validity

of different wave theories Méhauté (1976), Fig 7. The majority of waves is highly non-linear and can
best be described with 5th order stream function theory, reaching into 2nd and 3rd order stokes theory.
Some few waves seem to exceed the breaking limit which requires further investigation but might well
be due to the highly irregular nature of the timetrace.

The key feature to note here is, that the waves are highly nonlinear and could be expected to pose
a formidable challenge to conventional wave calibration techniques. Figure 8 presents two example
results for surface elevation using the predicted wavemaker input besides their target data. These
results were achieved using the same settings found to be optimal for the small amplitude waves.
Even without further optimisation agreement is good. In the first example (top) the highest peak at
10s and the lowest trough at 20s match almost perfectly in time and amplitude. In the second example
(bottom), deviations for the largest waves can be observed at the end of the trace, but overall the
agreement is still remarkable.

3.1 Computational environment used

Initial investigations of suitable neural network architectures were performed using version 3.8.5 of the
Python language and using the GPU enabled version of Tensorflow. This software was excuted on a
system which has an AMD Ryzen 7 3700x CPU and a NVIDIA GeForce RTX 2070 GPU. This system
has 8GB RAM and the operating system Ubuntu 20.04.1 LTS. Production runs were performed at
the EPSRC funded Tier 2 Northern Ireland HPC centre.

4 CONCLUSIONS

In this paper we present a method which uses neural networks to infer the wavemaker input time-
series required to produce a desired wave-elevation time-series at a probe in a fixed location. We
present results using a Multi-Layer Perceptron neural network which has been tuned and trained over
800 samples of random input and output data. The neural network consistently produced outputs
that, when used on the wavemaker, yielded accurate replications of the desired waves. Producing an
inference from the model for a single input wave was fast and efficient, showing great promise as an
alternative calibration method to the iterative tuning methods based on linear tank transfer functions.

Although not demonstrated here explicitly, it should also be noted that short time traces can be used
effectively. Short time traces of data can cause issues in conventional methods based on Fast Fourier
Transforms, but are often the only feasible option in computationally intensive simulations which
might only be used to investigate two or three wave cycles of interest.

While the results from this model are promising, this work is just a first proof of concept and foundation
for further investigations.

The current model required input sequences with a strict number of time-steps, 301 steps in the
case of the final trained model, and only returned output sequences with the same number of steps.
Attempting a model inference/prediction for an input wave-form that has a time span longer than
that of the training data will be an interesting future challenge.

Furthermore, while inferencing with the neural network method is very fast the process of generating
training data and training the model can be time consuming. However, since the required simulations
can be run in parallel and often in 2 dimensional cases on HPC facilities the overall run time doesn’t
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Figure 7. Wave parameters encountered in the larger wave cases represented as dots over the validity ranges of
several theories for periodic water waves, according to Méhauté (1976). Original figure adapted from Wikimedia
Commons, the free media repository
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Figure 8. Comparison between recalculated surface elevation and original data for two sets of results for the
large wave setup.

need to be long. In experimental facilities, where each dataset must be generated in real time and in
sequence this might be more of an issue. But even then, the data generation can be run once in a
highly automated way with minimal manual interaction and subsequently instantly provide virtually
any surface elevation trace required by the user. The effect of fewer training samples on the model
accuracy certainly warrants further investigation.

This research demonstrates the potential for the use of machine learning technology in the calibration
of wavemakers, and highlights how further investigation and development could result in improvements
in the utilisation of the technology.
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Schäffer, H. (1996), ‘Second-order wavemaker theory for irregular waves’, Ocean Engineering
23(1), 47–88. cited By 239.
URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0029657441&doi=10.1016%2%f0029-
8018%2895%2900013-B&partnerID=40&md5=cc5f50f6a508fa4ce0cebbe241f1393f

Schmitt, P. (2017), Steps towards a self calibrating, low reflection numerical wave maker using narx
neural networks, in ‘Proceedings of the VII International Conference on Computational Methods in
Marine Engineering’. International Conference on Computational Methods in Marine Engineering
; Conference date: 15-05-2017 Through 17-05-2017.
URL: http://congress.cimne.com/marine2017/frontal/default.asp

Schmitt, P., Windt, C., Davidson, J., Ringwood, J. V. & Whittaker, T. (2020), ‘Beyond VoF: alter-
native OpenFOAM solvers for numerical wave tanks’, Journal of Ocean Engineering and Marine
Energy .
URL: https://doi.org/10.1007%2Fs40722-020-00173-9

Windt, C., Davidson, J., Schmitt, P. & Ringwood, J. V. (2019), ‘On the assessment of numerical wave
makers in cfd simulations’, Journal of Marine Science and Engineering 7(2).
URL: https://www.mdpi.com/2077-1312/7/2/47

12


