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ABSTRACT

We consider the interfacial flow in and around porous structures in coastal and marine engineering.
During recent years, interfacial flow through porous media has been repeatedly simulated with Com-
putational Fluid Dynamics (CFD) based on algebraic Volume Of Fluid (VOF) methods (Jensen et
al., 2014; Higuera et al., 2014). Here, we present an implementation of a porous medium interfacial
flow solver based on the geometric VOF method, isoAdvector (Roenby et al., 2016; Roenby et al.,
2017). In our implementation, the porous media is treated without resolving the actual pore geometry.
Rather, the porous media, pores, and rigid structure are considered a continuum and the effects of
porosity on the fluid flow are modelled through source terms in the Navier-Stokes equations, including
Darcy-Forchheimer forces, added mass force and accounting for the part of mesh cells that are occu-
pied by the solid material comprising the skeleton of the porous medium. The governing equations are
adopted from the formulation by Jensen et al. (2014). For the interface advection using isoAdvector,
we also account for the reduced cell volume available for fluid flow and for the increase in the interface
front velocity caused by a cell being partially filled with solid material. The solver is implemented in
the open source CFD library OpenFOAM®. It is validated using two case setups: 1) A pure passive
advection test case to compare the isolated advection algorithm against a known analytical soltuion
and 2) a porous dam break case by Liu et al.(1999) where both numerical and experimental results are
available for comparison. We find good agreement with numerical and experimental results. For both
cases the interface sharpness, shape conservation as well as volume conservation and boundedness are
demonstrated to be very good. The solver is released as open source for the benefit of the coastal and
marine CFD community.
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NOMENCLATURE

〈 〉 Superficial volume average
〈 〉f Intrinsic volume average
¯ Ensemble average
Cm Added mass coefficient [-]
n Porosity [-]
ρ Fluid density [kg m−3]
gi Gravitational acceleration vector [m s−2]
µ Fluid dynamic viscosity [kg m−1 s−1]

CFD Computational Fluid Dynamics
VOF Volume Of Fluid
FVM Finite Volume Method
VARANS Volume Averaged Reynolds Averaged Navier–Stokes
MULES Multidimensional Universal Limiter with Explicit Solution
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1 INTRODUCTION

Interfacial flow through porous media appears in numerous engineering problems. For instance coastal,
marine, oil and gas as well as environmental applications such as waste management facilities. In this
work we focus on coastal and marine applications; two typical examples from this field are breakwaters
and seawalls. These structures often contain porous regions intended to absorb the kinetic energy of
the incoming waves. Given the complexity of these flows, analytical flow solutions are intractable.
The predictable power of experimental model tests, on the other hand, are limited by scaling effects.
Numerical simulation provides an alternative engineering tool from which important flow features can
be extracted such as pressure and velocity distribution and surface elevation.

Fully resolving the flow in the complex fluid domain inside the porous structure is typically too
computationally expensive. A more convenient modeling strategy is to treat the porous medium in
the volume averaged spirit of the Finite Volume Method (FVM). The first systematic study within
an FVM framework was carried out by van Gent (1995), who utilized the Volume Averaged Reynolds
Averaged Navier Stokes (VARANS) and added explicit source terms to the equations to account for
the resistance forces exerted on the fluid by the porous material. Those explicit forces were based
on the Darcy-Forchheimer equations. Later Liu et al. (1999) conducted experiments in order to
validate van Gent’s work. More recently, Higuera et al. (2014) applied van Gent’s approach in their
implementation, denoted IHFOAM, of an intrinsic VARANS set of equations along with a two-equation
turbulence closure model to take into account the turbulent stresses. Their interface advection used a
Multidimensional Universal Limiter with Explicit Solution (MULES) scheme in OpenFOAM. Similarly
Jensen et al. (2014) implemented the porous flow equatoins in the waves2Foam package (Jacobsen
et al., 2012) also using MULES for interface advection. Their implementation contained a corrected
interface advection taking properly into account the reduced cell volume available for fluid flow when
it is partially filled with porous material. Turbulence was not modelled and all turbulent effects were
assumed incorporated in the body force in the momentum equation.

In contrast to the previous studies that used algebraic VOF for the interface advection part, in this
paper we employ a geometric VOF method called isoAdvector. The algorithm performs very well in
terms of interface sharpness, volume fraction conservation, and boundedness, Roenby et al. (2016).
The method is well-documented and tested in multiple set-ups (Vukcevic et al., 2019; Laurila et al.,
2019; Meredith et al., 2017). Especially the sharp interface of isoAdvector is a desirable feature when
simulating waves interacting with porous structures in coastal and marine engineering. Our newly
developed solver, porousInterIsoFoam, is essentially an extension of the existing interfacial flow solver,
interIsoFoam, in OpenFOAM enabling it to model flows in and around porous structures.

In the remaining manuscript we briefly describe the theoretical background for the implemented solver.
We then present two validation cases using porousInterIsoFoam for 1) pure passive advection of a disc
through a porous region and 2) reproducing the porous dam break experiment conducted by Liu et
al. (1999).

2 THE GOVERNING EQUATIONS

In this section we present the porous interfacial flow equations implemented in our new solver.

2.1 The VARANS equations

For the treatment of the momentum equation, we follow the derivation of Jensen et al. (2014). By
applying a superficial volume average to the Reynolds Averaged Navier–Stokes (RANS) equations,
the VARANS equations are derived. In these equations, the effect of the porous region on the flow is
included based on the Darcy-Forchheimer equation via the linear and non-linear resistance forces and
an added mass force proportional to the fluid acceleration. The resistance coefficients are determined
according to van Gent (1995) and also account for turbulent effects.
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The volume averaged continuity equation is given as

∂〈ui〉
∂xi

= 0, (1)

where ui is the i’th component of the velocity field, the overbar represents ensemble averaging and the
brackets represent the superficial volume average. The volume-averaged, Reynolds averaged momen-
tum equation can be formulated as
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Here the added mass coefficient, Cm is modelled as Cm = 0.34(1 − n)/n, where n is the effective
porosity field. This is given by n = Vf/V , where Vf is the void volume within a cell and V is the
total volume of the cell. ρ is the fluid density, 〈p〉f is the intrinsic volume averaged pressure, ~g and
~x are the gravity and position vector, and µ is the dynamic viscosity. The last term, Fi contains the
combined resistance force term exerted by the porous region on the flow. It is modeled as

Fi = ρ〈ui〉 (a+ b |〈ui〉|) , (3)

where a and b are the resistance coefficients determined by van Gent (1995). The reader is referred
to Jensen et al. (2014) where a more complete account is given of these equations.

2.2 Interface advection in porous media

The evolution of the fluid interface can be described by a cell volume integrated form of the continuity
equation,

∂

∂t

∫
V
ρ(~x, t)dV +

∫
∂V
ρ(~x, t)ui(~x, t)dSi = 0, (4)

here dSi is the differential area vector pointing out of the volume V. When employing a VOF method
we define the volume fraction of phase-1 fluid within cell j as,

αj (t) =
1

V j

∫
Cj

H(~x, t)dV, (5)

where H is a three-dimensional Heaviside function equal to unit inside the phase-1 regions and zero
elsewhere. The outcome of this definition is a volume fraction field that takes values in the range from
0 to 1, αj ∈ [0, 1]; when αj = 0 the corresponding cell is filled with phase-2 fluid, on the contrary
αj = 1 implies that the cell is totally occupied by phase-1. Finally, when αj ∈ (0, 1) an interface is
present within this cell.

By time integrating the discretized form Equation 4 over the interval [t, t+ ∆t] one can arrive at

αj (t+ ∆t) = αj (t)− 1

V j

∑
fj

∫ t+∆t

t

∫
f
H(~x, t)ui(~x, t)dSidτ, (6)

where, V j is the total volume of cell j and f j the set of faces of cell j. The double integral of the
RHS of Equation 6 is essentially the outward advected phase-1 fluid from cell j through its face f
during the time interval [t, t + ∆t]. Without getting into much detail, isoAdvector evaluates this
integral, assuming a temporally constant advecting face flux, φk(t), on face k, yielding the following
approximation, ∫ t+∆t

t

∫
k
H(~x, t)ui(~x, t)dSidτ ≈

φk(t)

Sk

∫ t+∆t

t
Ak(τ)dτ, (7)
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where Sk is the face area and Ak(τ) is the submerged area of face k. To calculate this area, it is
important to know how the interface moves inside a cell during the interval [t, t+ ∆t] and hence how
it sweeps the face of interest k. The interface inside a cell is by an approximately planar polygonal
face with a well-defined center xIi and a unit normal vector nIi . The interface advection velocity U I

i

is modelled to be equal to the interpolated velocity from the neighbouring cell velocities at xIi . The
aforementioned setup results in a unique description of how interface travels within a cell and how it
sweeps a given face k. Based on that model Ak(τ) is given as a second-order polynomial in time that
can be further integrated as per Equation 7. In favour of clarity, all the details of the isoAdvector
method are left aside. The reader is referred to Roenby et al. (2016) and Scheufler and Roenby (2019)
that describe in detail how isoAdvector works.

In order to extend isoAdvector to flows in porous media we must make a number of modifications to
the existing algorithm. First, the available void volume within cell j is only a portion nj of the total
volume. As a result, the volume fraction definition in Equation 5 should be altered to

αj (t) =
1

njV j

∫
Cj

H(~x, t)dV, (8)

in this way the volume fraction field retains the property to be in the range 0 to 1 with αj = 1 to refer
to a cell with its void volume filled with phase-1 fluid and αj = 0 to a cell with its void volume filled
with phase-2 fluid. Subsequently the above volume fraction regulation directly affects Equation 6,
which in order to accommodate for the presence of a porous medium becomes

αj (t+ ∆t) = αj (t)− 1

njV j

∑
fj

∫ t+∆t

t

∫
f
H(~x, t)ui(~x, t)dSidτ. (9)

The isoAdvector algorithm evaluates the second term of the RHS in Equation 9 based on geometric
operations. Those operations require an estimate for the advection velocity vector U I

i at interface cen-
ter ~xI . This estimation is essentially an interpolation of the velocity values stored at the neighbouring
cell-centers to the interface center. However when a porous medium is present, the advection velocity
has to be adjusted accordingly. This is because the interface in a cell is a Lagrangian surface and thus
it will be advected with the superficial velocity. While the velocity values stored in the neighbouring
cell centers are an intrinsic representation of the velocity field. As a result, the interpolated velocity
at the interface center ~xI has to be divided by the porosity value of the cell; therefore the adjusted
interface advection velocity will be U I′

i = U I
i /n.

3 BENCHMARK CASES

Here we present validation of the porousInterIsoFoam solver in two different cases. Initially, a passive
advection case is simulated, and afterwards, we reproduce the experimental results of Liu et al. (1999).
These simulations aim to evaluate/illustrate some critical aspects of this new solver, like interface
sharpness, shape preservation, boundedness, and volume conservation.

3.1 Passive Advection of a Disc Through a Porous Region

In this section, the passive advection of a circular water blob through a uniform porous region is
simulated. The term passive implies that the flow field remains constant, and undisturbed by the
presence of the water blob or the porous region throughout the simulation. As a result, this case will
allow us to have a closer look at the interface advection algorithm isolated from the complex porous
flow phenomena. As depicted in Figure 1 the computational set-up consists of a rectangular domain
with length L = 5[m] and height H = 3[m]. The rectangular domain contains an inner porous region
of length Lp = 2[m] with porosity n = 0.5. The circular blob with center (x0, y0) = (0.5, 0.5) [m]
and radius R = 0.25[m] is advected diagonally with a velocity U = (1, 0.5)[m s−1] through the porous
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Figure 1: Sketch of the set up for the disc in constant flow through porous region case. The disc is
shown in grey with a dashed outline, while the porous region located in the middle of the figure is
depicted in a grey-white pattern. U refers to the constant velocity vector, L is the total length of
the domain, H is the total height of the domain, and Lp is the length of the porous region in the
horizontal direction.

(a) Initial (b) Entry (c) Inside

(d) Exit (e) Final

Figure 2: Disc in uniform flow at various phases (Initial, during the entry, inside, during the exit
and outside of the porous region). Volume fractions are shown in grey scale while the initial α = 0.5
contour is illustrated in red. α = 0.5 contour is shown in blue, and α = 0.01 and α = 0.99 contours
are shown in green. In yellow is shown the porous region boundary.

region. The simulation lasts t = 2.5[ s ]. During this time the disc enters, passes through, and exits the
porous region. Lastly, the timestep selection is adjustable in order to keep the maximum interfacial
Courant number below 0.5. The different stages of the disc during the simulation are illustrated
in Figure 2. As the disc enters the porous region, it elongates in the advection direction, and its
advection velocity becomes double. Afterwards, the elongated ellipsoidal blob is transformed back
to its original shape as it leaves the porous domain. This initial visual inspection indicates that the
advection algorithm works as expected. The interface sharpness is illustrated with the α = 0.01 and

5



0.0 0.5 1.0 1.5 2.0 2.5
Time [s]

10−19

10−18

10−17
(V

-V
0
)/
V

0
[-

]

(a) Volume fraction error

0 1 2
Time [s]

0.0

2.5

5.0

m
ax

(a
lp

h
a)

-1
[-

]

×10−16

(b) Upper

0.0 0.5 1.0 1.5 2.0 2.5
Time [s]

10−24

10−22

10−20

10−18

10−16

10−14

ab
s(

m
in

(a
lp

h
a)

)
[-

]

(c) Lower

Figure 3: Absolute normalized error, upper and lower bounding of water volume fraction as a function
of time. The dashed lines represent the time instances that the disc is externally tangent to the porous
region, in contrast the dash-doted lines show the time instances that the disc is internally tangent to
the porous region.

α = 0.99 contours. They should be as close to each other as possible with the given mesh resolution.
They are observed to be three cells apart during the whole course of the simulation. The blue and
red lines in each panel on the figure show the actual and theoretical circular initial and final interface
shape, respectively. In the part of the simulation where some of the disk is inside the porous region, its
shape gets distorted because of the different intrinsic velocities inside and outside the porous region.
Nevertheless, the disk is observed to regain its circular shape very accurately upon exit from the
porous region.

In Figure 3a a plot of the normalized absolute error of total water volume fraction is shown. The
error is observed to be in the order of the machine precision. One more outcome that follows from the
properties of the isoAdvector algorithm is the satisfying upper and lower bounding behaviour. Here
is evaluated by monitoring the maximum overshoot (max

(
αj
)
− 1) and undershoot (

∣∣min
(
αj
)∣∣). It is

clearly visible in Figure 3b & 3c that both maximum undershoot and overshoot values of the water
volume fraction are confined close to machine precision.

3.2 Porous Dam Break

The second simulation case intends to reproduce an experiment of a porous dam break conducted by
Liu et al. (1999), this particular experiment has been a reference point for many past developments in
the field. Here we evaluate the solver behaviour as a whole including the combined interface advection
and porous momentum equation. Figure 4 illustrates the simulation set up. On the left there is a
column of water that is released at t = 0[s]. Then water flows through the uniform porous block placed
in the middle of the domain, until at some point the system finds equilibrium. The full description of
the experimental setup can be found in Liu et al. (1999).

The water elevation profiles for different time instances are illustrated in Figure 5. It is clear that
porousInterIsoFoam predicts the water elevation accurately in most of the simulation. There is a
deviation in the initial phase, this is presumably due to modelling of the water gate; in the simulation
the whole water column is released instantly while in reality it is a finite process that takes around
0.1[s].

Figure 6 illustrates the interface sharpness in the simulation. Here the α = 0.01 and α = 0.99 contours
are shown to be separated by three cells which is the best one can do with a VOF representation.

In Figure 7a we show the normalized volume fraction evolution over the course of the simulation
(i.e. 4[s]). Here it is shown that the new solver has excellent volume fraction conservation properties
since the maximum normalized volume fraction deviation remains below the order of 10−10. The
accumulation of the water volume fraction error is associated with the iterative pressure solver and its
convergence criteria. We have verified numerically that when stricter tolerance is applied this error
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Figure 4: Sketch of the set-up for the porous dam break case. The free surface of the initial water
distribution is shown in a dashed line, while the porous region located in the middle of the figure is
depicted with a grey-white pattern. L is the total length of the domain, H is the height of the initial
water column, and Lp is the length of the porous region in the horizontal direction.
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Figure 5: Comparison of free surface elevation profiles at 9 different time instances. The experimental
data, shown in block circles, are measurements presented in Liu et al. (1999) while the numerical
values, produced by porousWaveFoam, are shown in green dashed line (interFoam-based solver using
MULES advection scheme in waves2Foam). The free surface values acquired by our new implemen-
tation are shown in red line. The gray rectangle in the middle of the domain highlights the porous
region.

becomes smaller.

Regarding the upper and lower bounding of the volume fraction, one can observe in Figure 7b & 7c,
again, very promising results. The maximum overshoot of the volume fraction field is confined below
10−10 while the undershoot is retained down to machine precision.
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Figure 6: Porous dam break at t = 0.8 [s] . The simulation is performed with porousInteIsoFoam.
Volume fractions shown in grey scale while the α = 0.5 contour is illustrated in red. α = 0.01 and
α = 0.99 contours shown in green. The porous region is shown in blue.
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Figure 7: Absolute normalized error, upper and lower bounding of water volume fraction as a function
of time for the porous dam break case.

4 CONCLUSION

An extension of the interfacial solver interIsoFoam has been derived and implemented. The extended
solver, porousInterIsoFoam, is capable of simulating two-phase flows inside and around porous regions.
The momentum equation implementation is based on the analysis of Jensen et al. (2014), while the
geometric VOF method, isoAdvector, is extended to account for a porous medium occupying part of
the volume of computational cells. Using isoAdvector for interface advection gives rise to improved
interface shape sharpness as well as good volume conservation and boundedness. The solver was
validated with a pure advection test case demonstrating excellent shape preservation. It was also
compared against numerical and experimental data in a porous dam break case where it accurately
matched the interface shape measurements while also conserving fluid mass to a high precision with
a sharp and well-bounded volume fraction field. The porousInterIsoFoam solver is released as an
open-source tool that can facilitate coastal and marine studies of interfacial flows that involve porous
regions.
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