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Abstract. Much work has been done over the past years to obtain a better understanding of 

cavitation, as well as to predict and alleviate its effects on performance. Particularly, lifting-

surface sheet cavitation is addressed in various works as a free-streamline problem. Typically, 

a potential solver is used in conjunction with a geometric criterion to determine the shape of 

the cavity, whereas an iterative scheme is employed to locate the cavity surface. In this work 

we reformulate the problem of steady partially cavitating two-dimensional hydrofoils in a 

shape-optimization setup. The sensitivities required for the gradient-based optimization 

algorithm are derived using the continuous adjoint method. The objective function is 

formulated based on the assumption that the pressure on the cavity is constant and is 

evaluated using a source-vorticity BEM solver, whereas the control points of the B-spline 

cavity parametrization serve as design variables. The proposed numerical scheme is validated 

and found to predict well both the cavity shape and the cavitation number. Moreover, the 

benefits of using the adjoint method to predict the sensitivity derivatives are highlighted in a 

selected study case. 

 

1 INTRODUCTION 

One of the most severe technical requirements imposed on the design of lifting surfaces for 

hydrokinetic turbines and marine propulsion systems is due to cavitation. Many forms of 

cavitation exist, such as bubble cavitation, cloud cavitation and sheet cavitation. As it 

develops, cavitation creates noise, vibration, metal erosion and, finally, a drop in 

performance. [1]. 

In this work we address the problem of hydrofoil cavitation as a free streamline problem. 

In formulations as such, a potential solver is used in conjunction with a geometric criterion to 

determine the shape of the cavity, whereas an iterative scheme is employed to locate the 

cavity surface [2,3]. Upon convergence the exact boundary conditions are satisfied on all 

portions of the foil-cavity boundary. However, non-iterative methods have also been 

considered; see [4]. Particularly shape optimization techniques based on the adjoint method 
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were employed to determine the optimum (minimum-drag) shape of a supercavitating torpedo 

given certain operating conditions; see [5,6]. The developed methodology consists of an 

optimization process able to determine the cavity and cavitator shapes simultaneously.  

The adjoint method is increasingly gaining popularity in the field of multidisciplinary 

optimization for it requires less evaluations than any evolutionary algorithm in problems 

where the number of design variables is greater than the number cost functions [5]. The 

discrete version of the adjoint method has also been implemented in the design of vessel hulls 

[7], with an excellent comparison between the sensitivities obtained with the adjoint method 

and the reference values corresponding to finite-differences. Motivated by these results, in 

this work we reformulate the problem of steady partially cavitating two-dimensional 

hydrofoils in a shape-optimization setup. The sensitivities required for the gradient-based 

optimization algorithm are derived using the continuous adjoint method; see also [8,9]. The 

sensitivities can also be derived using symbolic mathematics to further facilitate the process, 

as presented in [10]. The objective function is based on the assumption that the pressure on 

the cavity remains constant, and is evaluated at each optimization cycle using a source-

vorticity BEM solver; see [11]. In terms of the cavity shape, the control points of the B-spline 

cavity parametrization are included in the set of design variables.  

Finally, regarding the problem statement and the targeted unknowns, we address two 

variations. The first is namely the cavity shape prediction for fixed cavity length and unknown 

cavitation number; as presented in [2]. The second, more challenging, is known as the `direct 

problem' and consists of determining the cavity extent, as well as the cavity shape for given 

cavitation number; see [3]. 

The proposed numerical scheme is compared with other methods, in terms of the first 

problem statement and is found to predict well the cavity shape and the cavitation number. 

Moreover, the benefits of using the adjoint method to predict the sensitivity derivatives, 

instead of the standard finite difference scheme, are highlighted in a study case. 

 

2 OPTIMIZATION PROBLEM 

The geometry of the hydrofoil is represented as a clock-wise directional closed parametric 

curve, 

2: ( ) {( , ) : ( ), ( ), }.C t x y x x t y y t t Ir  (1) 

with 
1 1( ) ( ), ( ) ( )o ox t x t y t y t  denoting the trailing edge, and can be remodeled for any given 

set of nodal coordinates using B-spline interpolation. The control points that affect the shape 

of the cavity boundary 
c
 are included in the set of design variables , {1, , }.nb n N  The 

detachment and termination points of the constant-pressure cavity surface are denoted as 

,D Ts s  respectively, whereas 
Ls  is the re-attachment point. Finally the dot notation ( )r t  

denotes differentiation with respect to the curve parameter t .  

In this work, the lifting-surface sheet cavitation problem is addressed as a free streamline 

problem and thus the cavity surface is to be determined upon the solution to the following 

shape-optimization problem. On the cavity boundary 2{( , ) : ( , )}c D Tx y t t t  we assume 

that the cavitation number is constant, consequently the pressure is assumed uniform. To 

translate this into a cost functional, 
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Figure 1. Problem formulation for 2d partially cavitating foil in steady flow. 
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,
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F gds p p ds  

 

(2) 

where p  is the target cavity pressure. The cavitation number is defined as  

2

( )
,

0.5

p p

U
 

 

(3) 

where ,U p  and T  are respectively a reference velocity, pressure and temperature in the 

flow (usually upstream quantities),  the density of the fluid and ( )p  is the saturated 

vapor pressure. Particularly, the kernel of the objective function can also be expressed in 

terms of the non-dimensional pressure coefficient 2( 0.5 )pC U  as follows 

20.5 .pp p U C  (4) 

Notably, admissible solutions must comply with the requirements of incompressible, 

inviscid and irrotational fluid motion in the region. The primal problem in terms of the 

disturbance velocity potential ( , ; )nx y b  serves as a constraint and is stated as 

2( , ; ), 0,      ( , ) ,n nR R x y b b x y  (5) 

 

1

0,
o

Kutta t t
R U Ut t  (6) 

with boundary conditions 

0,     ( , ) ,c wettedU x y
n

n  

 

(7) 
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0,     ( , ) ,x y  (8) 

where  denotes the disturbance velocity,  the total potential, n  and t  the normal 

(directed inwards) and tangential vector, respectively; see Figure 1. The boundary value 

problem presented above can be solved when the ambient free-stream flow and the boundary 

of the hydrofoil are known. After the velocity potential has been determined the pressure can 

be evaluated using Bernoulli's theorem for steady potential flows 
 

2 21 1
.

2 2
p V p U c  

 

(9) 

Finally, it is important to note that the primal variable is assumed to be implicitly 

dependent on the design variables. In literature several variations of the partial cavitation 

problem can be found [2, 3]. In the scope of the present work, the following variation is 

considered, whereas other variations are left to be examined in future work  

 Determine the cavity shape and cavitation number , , , ,n i i TLb x y  based on 

known cavity length /cl c . Τhe design variables consist of the cavitation number, the 

coordinates of the B-spline parametrization of the attached cavity, as well as the length 

of the pressure attenuation region .TL
  

 

2.1 Sensitivity derivatives 

In this work the simple steepest-descend method is implemented to treat numerically the 

deterministic optimization problem. The straightforward approach would be to calculate the 

derivatives of the objective function with respect to the design variables by implementing a 

central difference scheme  

, ; , ;
.

2

n n

n

F x y b h F x y b hdF

db h
 

 

(10) 

However, this approach requires 2N evaluations of the primal problem, with N denoting the 

total number of design variables. As an alternative we propose the use of the continuous 

adjoint method to produce estimates of the sensitivity derivatives that require fewer 

evaluations of the primal problem; particularly two evaluations per optimization cycle. The 

adjoint-state equations are derived along with the sensitivity derivatives by introducing the 

adjoint velocity potential  as a Lagrange multiplier. The derivation for the continuous 

adjoint method occurs at the level of the partial differential equations. Note that the primal 

problem in Eq. (5) holds for every ( , )x y , therefore the integral term is zero. The 

augmented cost functional is 

  ,o KuttaL F R s s R ds  

 

(11) 
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with os s  denoting the Dirac delta generalized function. In order to obtain the sensitivity 

derivatives we take the first variation of the functional, see [12], with respect to the design 

variables , {1, , }nb n N  as follows 

21
  .

2c

o Kutta

n n n n

L
p p ds R s s R ds

b b b b
 

 

(12) 

 

2.2 Variation of the objective functional 

The first term in Eq. (12) has to be differentiated as follows 
 

( )
( ) ( ) ,

T T

D D

s s
T D

T D
s s

n n n n n

s sF g ds
g s g s ds g

b b b b b
 

 

(13) 

where ,  
D T

o o

t t

D T
t t

s dt s dtr r  with { , , }o D Tt t t I . The first two terms in Eq. (13) appear 

after the implementation of the Leibnitz rule of integration. The differentiated form of the cost 

functional is therefore,  

      ( ) ( )

T T

D D

T T

D D

s s

t s
s s

n n n

s t
T D

t T D
s t

n n n n

pF
V p p ds p p ds

b b b

s s
V p p dt g s g s g dt

b b b b

rt
U

 

 

(14) 

 

Note that, it is not possible to explicitly determine the derivative term / nb , since the 

velocity potential  is implicitly dependent on the design variables.  

 

2.3 Variation of constraints 

Using the Gauss theorem along with the no-entry boundary condition Eq. (7), the second 

term in Eq. (12) becomes 
 

     .
n n n n

R d d ds ds
b b b b

n
n U  

 

(15) 

Τhe third term in Eq. (12) imposing a stagnation point at the trailing edge becomes 

1
1,

Kutta o
o

n n n

R

b b b
t t  

 

(16) 

taking into account the discontinuity of the velocity disturbance potential at the vicinity of the 

trailing edge. The tangential vectors near the trailing edge are not dependent on the design 

variables and therefore 
1/ = / 0o n nb bt t .  
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2.4 Adjoint problem and sensitivities 

The first variation of the augmented objective function is derived from Eqs. (12-16), after 

re-arranging terms and using integration by parts, 

1
1 1

( )  

       ( ) ( ) ( ) ,

T

D

T

D

s

s t

n n n ns

s

o
t o o

n n ns

L
SD V p p ds d

b b b b

V p p s s
b b b

n

t t

 

 

(17) 

where  

      ( ) ( ) ,

T T

D D

T

D

s s

t
s s

n n

t
T D

T D
t

n n n n

p
SD V p p ds p p ds

b b

s s
g s g s g dt ds

b b b b

t
U r

r n
U

 

 

(18) 

serves as the approximation formula for the sensitivity derivatives. The adjoint boundary 

value problem is introduced so that Eq. (17) is independent of  / .nb  On the cavity 

boundary a non-homogeneous Neumann condition is to be satisfied. 

0,     ( , ) ,x y  (19) 

0,     ( , ) ,wettedx yn  (20) 

( ) ,     ( , ) .s t cV p p x yn  (21) 

Since the admissible shapes of the cavity shape are such that ,D Ls s  are fixed, the variation 

/ nb  at these positions along the boundary are zero. The only problem arises when we try 

to define the pressure attenuation region TL . In our formulation the position of 
Ts  should be 

such that 1tV U , equivalently p p . For that reason, we assume that the term in Eq. 

(17) associated with 
Ts  is also zero. However, the length of the pressure attenuation region is 

included in the set of design variables. The undefined constant associated with the exterior 

Neumann boundary value problem Eqs. (19-21) is resolved, in the present work, by assuming 

( ) 0ot . The latter is used in conjunction with continuity assumption of the adjoint potential 

, thus dropping the last two terms in the right hand-side of Eq. (17). 

 

3 NUMERICAL IMPLEMENTATION 

3.1 Solution of the primal problem 

For the solution of the primal problem in Eq. (5-8), a low order panel method based on 

piece-wise constant source and vortex distributions is implemented; see [10]. The boundary is 

approximated with N  straight line segments denoted as panels and denoted as h . On each 
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panel the distribution of sources and vortices is piece-wise constant. 

( ) ,     1, ,    γ( ) .jq s q j N s  (22) 

The total velocity ,i i iuV  at the midpoint of the i th  panel is given by 

1 1 1 1

,    
N N N N

x y

i j sij vij i j sij vij

j j j j

u U q u u U q  

 

(23) 

with  

2 2

, ,
, ,     , ,

2 2
j j

si si si si

sij sij vij vij

si sipanel panel

x y y x
u ds u ds

r r
 

 

(24) 

where ,si si six yr  is the relative position of the control point ,i ix y  to the point of 

integration. Particularly ,  y .si i s si i sx x x y y  The discretized form of the boundary 

conditions is as follows 

0,     1, ,i i i NV n  (25) 

1 1 0.N NV t V t  (26) 

Based on the above Eqs. (25-26) we can form a system of 1N  equations with 1N  

unknowns. These are the strengths of the vortex and source distributions respectively. The 

pressure coefficient at the midpoint of the i th  panel can be calculated using 

2

2
, 1 ,ti

p i i

V
C x y

U
 

 

(27) 

where tiV  is the tangential velocity at the midpoint of each panel. For the lift and the moment 

coefficients we assume that pC  is constant on each panel.  

To illustrate that the boundary element algorithm performs satisfactorily within the scope 

of potential theory, we present in Figure 2a, a comparison between the obtained CL a   curve 

with experimental data found in [13] as well as simulations performed with the inviscid 

version of XFOIL [14] for a NACA4412 hydrofoil at angle of attack 4dega , free-stream 

velocity (1,0)U . Moreover, a convergence study for the same test case is presented in 

Figure 2b. The simulation with the finest discretization serves as the reference case. 

 

3.2 Solution of the adjoint problem 

The adjoint field equation accompanied with non-homogeneous Neumann type conditions 

can also be treated in the sense of boundary integral methods 

2 0,     ( , ) ,x y  (28) 

0,     ( , ) ,wettedx yn  (29) 
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( ) ,     ( , ) .s t cV p p x yn  (30) 

The same discretization scheme is used to approximate the boundary of the foil including 

the cavity surface. Since this problem does not have circulation, vortex elements are not used 

in the representation and on each panel the distribution of sources is piece-wise constant, 

( ) ,     {1, }.js j N  The adjoint velocity ,ai ai aiuV  at the midpoint of the i th  panel 

is given by 

1 1

,    ,
N N

ai j sij ai j sij

j j

u q u q  

 

(31) 

with ,sij siju  defined in Eq. (24). The boundary conditions in discretized form are 

( ) ,        ( , )

          0,                                  ( , )  

ai i s ti i i i c

i i wetted

V p p x y

x y

V n
 

(32) 

with the directional derivative on the rhs evaluated using a finite difference scheme. Based on 

the above Eq. (32) we can form a system of N equations with N unknowns. These are the 

strengths of the piece-wise constant source distributions j .  

To further illustrate the quantitative differences between the primal and the adjoint 

solutions we present in Figure 3 results obtained with the present method, for the case of a 

NACA16006 hydrofoil at 4dega , (1,0)U  with an attached cavity. The cavity shape in 

this example is merely an initial guess for the test case presented in the section that follows. 

Particularly, the cavity length is set equal to / 0.5cl c . In Figure 3a, we present the non-

dimensional pressure field around the foil along with the disturbance velocity streamlines 

obtained for a non-cavitating foil with the fully wetted algorithm (primal problem). In Figure 

3b, we present the corresponding adjoint potential field and the adjoint velocity streamlines.  

 

  
 
Figure 2. Numerical results for the NACA0012 hydrofoil. (a) Comparison between the present method and 

experimental data found in [13] as well as inviscid simulations using XFOIL [14]. (b) Convergence study for the 

primal solver.  
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Figure 3. Numerical results for the NACA16-006 hydrofoil at α=4deg. (a) Pressure coefficient and disturbance 

velocity field streamlines. (b) Adjoint potential ψ and velocity streamlines. 

 

3.3 Optimization algorithm 

Our analysis leads to the algorithm (PCAVOPTIM) described below. Since the simple 

steepest-descent method is implemented, the rate of convergence is strongly dependent on the 

selection of the constants , as well as the initial guess for the design variable vector. The 

optimization process continues until the solution has converged or the number of maximum 

evaluations 
max

 has been reached. To verify that the proposed method is capable of 

predicting the sensitivity derivatives we performed comparisons with results obtained using a 

central difference scheme with fine discretization. In Figure 4a we assume that 
Ds  is known 

and introduce 24N  degrees of freedom. The results are in good agreement with the central 

differences in terms of order of magnitude and sign. 

 

 
 

The cavity initialization affects the sensitivities near the edges of the cavity and this is 

observed especially for the / iL x  sensitivities. Assuming that the constants selected for the 

steepest-descend scheme are sufficiently small, a local optimum is reached as the design 

cycles progress. This is evident from the convergence study presented in Figure 5. Increasing 
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the total number of design variables from 10DOFSN  to 30DOFSN  improves the final result, 

however, in the case of 40DOFSN  over-fitting interferes with the final result. 

 

3.4 Numerical Results 

 To highlight the ability of the proposed numerical scheme to predict both the cavity shape 

and the cavitation number as part of the solution, we present a comparison with Kinnas et al. 

[3]. The cavitation shape corresponds to a NACA16006 hydrofoil at 4dega , cavity length 

/ 0.5cl c  and pressure attenuation region defined by 0.05cl . The initial guess for the 

cavity boundary for all simulations is a parabolic arc and 
Ds  is positioned at the leading edge. 

The parametrization of the final cavity shape in terms of control points is given Table 1, 

whereas the initial and final shape of the cavity are shown in Figure 6. The pressure 

coefficient distribution is in excellent agreement with the model presented in [3] based on the 

results obtained with the PCAVOPTIM shown in Figure 7. The cavity volume or more 

precisely the sectional area is also of great interest, since in an unsteady case changes in 

volume determine the monopole-type acoustic source strength. The proposed model is able to 

predict the volume of the cavity and particularly for the case study in [3] with 2%  accuracy. 

 
Table 1: Attached cavity B-spline control points 

 

ncp  
ix  

iy  
ncp  

ix  
iy  

1 0 0 9 0.317714202 0.07419988 

2 -0.000003922 0.002778050 10 0.379138102 0.07248445 

3 0.005049522 0.009740524 11 0.432027052 0.06650745 

4 0.031419923 0.025242150 12 0.476973355 0.05536975 

5 0.071704606 0.039947408 13 0.499050602 0.03302545 

6 0.124515013 0.053675617 14 0.501870332 0.02999972 

7 0.185911923 0.064407361 15 0.503675578 0.02999959 

8 0.251802936  0.07146618  …… ……… 

 

4   CONCLUSIONS 

The problem of steady, partially cavitating two-dimensional hydrofoils is formulated in a 

shape-optimization setup. In terms of the cavity shape, the control points of the B-spline 

cavity parametrization are included in the set of design variables.  The problem is solved by 

implementing an optimization algorithm using the continuous adjoint method to calculate the 

sensitivity derivatives. The proposed numerical scheme when compared with other methods 

and data from a numerical test case and is found to predict well the cavity shape, volume and 

cavitation number. Finally, the benefits of using the adjoint method to predict the sensitivity 

derivatives, in comparison to the standard finite difference scheme followed in the gradient 

method are discussed.  

Future work is planned towards systematic comparisons with experimental data and other 

methods as well as the investigation of the effects of camber and thickness on cavity shape 

and volume. Treatment of the ‘direct problem’ as addressed in [3], where the cavitation 

number is known and the cavity shape and length are to be determined upon solution of the 
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problem, is a challenging variation left for future work. Finally, the present model could be 

extended to treat the problem of cavitating hydrofoils operating beneath the free-surface.  
 

 
 

Figure 4. PCAVOPTIM (a) Comparison between the sensitivities obtained using the proposed method and a 

finite difference scheme. (b) Convergence study for the cost functional during each design cycle with the total 

number of design variables as a parameter. 

 

 
 

Figure 5. Comparison between the present method and results found in Kinnas et al [3]. (a) Initial and final 

cavity shape for the partially cavitating NACA16006 foil with / 0.5cl c at 4dega . Cavity characteristics 

2

max0.92,  / 0.073486,  / 0.01366.h c Vol c  The squares represent the control points of the B-spline 

representation. (b) Pressure coefficient for the partially cavitating NACA16006 and comparison with [3]. 
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