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ABSTRACT

A Large-Eddy Simulation study is reported on the wake generated by the rotor of an axial-flow hy-
drokinetic turbine. The resolution of the computational grid, composed of about 1.9 billion points,
enabled us to capture in detail the phenomena of instability of the tip vortices, including long-wave and
short-wave instabilities and mutual inductance. We found that these phenomena trigger the process
of wake recovery, starting when the coherence of the tip vortices is lost. This allows the free-stream
momentum to penetrate into the wake core via both radial inward flows and turbulent mixing.

Keywords: Hydrokinetic energy; Axial-flow turbines; Large-Eddy Simulation; Immersed-Boundary
method.

NOMENCLATURE

AF Radial average of the generic quantity F

CP Power coefficient
cp Pressure coefficient
CT Thrust coefficient
D(·) Divergence operator
D Diameter of the turbine
f Forcing term in the momentum equation
G(·) Gradient operator
k Turbulent kinetic energy
L(·) Laplace operator
L Reference length scale
p̃ Filtered pressure
p∞ Free-stream pressure
Q Torque on the rotor
Q Second-invariant of the velocity gradient tensor
R Radius of the turbine
r Radial coordinate in the cylindrical reference frame
Re Reynolds number
S Rotor frontal area
T Thrust on the rotor
t Time
U∞ Free-stream velocity

1



ũ Filtered velocity vector
ur Radial velocity component
uz Streamwise velocity component
V Reference velocity scale
z Axial coordinate in the cylindrical reference frame
· Ensemble-average operator
·̂ Phase-average operator
·̃ Filter operator

ν Kinematic viscosity of the fluid
ρ Density of the fluid
τ Subgrid stress tensor
Ω Rotational speed of the turbine

CEA French Alternative Energies and Atomic Energy Commission
CFL Courant-Friedrichs-Lewy number
FT Flume tank
HPC High-Performance Computing
IB Immersed-Boundary
IFREMER French Research Institute for Exploitation of the Sea
INSEAN Marine Technology Research Institute
KHL Kelvin Hydrodynamic Laboratory
KNL Knights Landing
LES Large-Eddy Simulation
RANS Reynolds-averaged Navier-Stokes
SGS Subgrid stress
TGCC Très Grand Centre de calcul
TSR Tip Speed Ratio
TT Towing tank
WALE Wall-adaptive local eddy-viscosity

1 INTRODUCTION

Hydrokinetic energy harvesting is expected to provide a significant contribution to meet the growing
demand by the world economy and to gradually replace fossil fuels in the next years (see, for instance,
the review by Laws and Epps, 2016). Currently, most interest by industry and academia is focused
on axial-flow turbines (Kumar and Sarkar, 2016), also thanks to the experience developed over several
decades on wind energy. Nonetheless, a full understanding of the process of wake development of
the axial-flow turbines has not been achieved yet, in both fields of wind and hydrokinetic energy.
In particular, the target of accurately computing the flow downstream of axial-flow turbines is very
challenging, because of the complexity of the phenomena of instability of the coherent structures
shed by these devices and their long wake development. Properly capturing these features involves
a substantial computational effort. Unsteady Reynolds-averaged Navier-Stokes (RANS) approaches
are often adopted and well-suited to estimate the performance of an isolated device. However, the
accurate solution of the wake signature, which is especially important in defining the influence on the
inflow conditions of downstream turbines in farm configurations, requires the use of eddy-resolving
methodologies, coupled with numerical methods with optimal conservation properties and very fine
computational grids. Therefore, to date only a few computational studies have explored the use of
geometry-resolving Large-Eddy Simulation (LES), relying on grids finer than those typically adopted in
the framework of RANS computations (Kang et al., 2012; Kang et al., 2014; Chawdhary et al., 2017;
Ouro and Stoesser, 2019). Their purpose consists in substantially improving our understanding of the
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underlying physics of the wake of axial-flow turbines. This achievement is very much needed. The
information provided by high-fidelity simulations in revealing details of the flow physics can be utilized,
for instance, to assess the capabilities of turbulence closure strategies adopted by RANS methodologies,
to improve their tuning to this particular class of flows and to devise more accurate low-order models
of the turbines and their wake, as actuator disks or actuator lines. The simulation of a single turbine
using geometry-resolving approaches is indeed already a big challenge, even in a High Performance
Computing (HPC) environment. It becomes impossible for farm configurations, even on the most
powerful supercomputers in the world. Arrays of turbines are the typical solution for the large-scale
harvesting of hydrokinetic energy. Due to computational cost restrictions, the optimization of their
layout can only be achieved by means of models (Mycek et al., 2017; Ouro et al., 2019), mimicking in
different ways the action of the turbines on the flow or the development of their wake, but needing
proper physics-informed tuning via accurate experiments and high-fidelity numerical simulations.

In this work we report LES computations on the rotor of an axial-flow hydrokinetic turbine, conducted
on a computational grid consisting of about two billion points. This is an order of magnitude more
extensive than in the most advanced studies available today on axial-flow turbines, in both fields of
wind and hydrokinetic energy. We verified indeed that the present computations were able to reproduce
more in detail the phenomena of instability reported by earlier theoretical works and experimental
studies dealing with similar wake systems, as those by Widnall (1972) and Felli et al. (2011). In
addition, we exploited the large dataset generated by LES to investigate the correlation between the
instability of the tip vortices and the mechanism of momentum recovery. As discussed above, the
latter is especially important, since it affects the signature of the turbine and the momentum available
to downstream devices in farm layouts.

2 METHODOLOGY

The filtered Navier-Stokes equations for incompressible flows were resolved in non-dimensional form:

D(ũ) = 0, (1)

∂ũ

∂t
+D(ũũ) = −G(p̃)−D(τ ) +

1

Re
L(ũ) + f , (2)

where ũ and p̃ are the filtered velocity vector and pressure, respectively, ∂ũ
∂t

is the unsteady term
of the momentum equation, D(·), G(·) and L(·) are the divergence, gradient and Laplace operators,
Re is the Reynolds number, τ is the subgrid-scale (SGS) stress tensor and f is a forcing term.
The Reynolds number comes from scaling the dimensional Navier-Stokes equations using a reference
velocity scale, V, and a reference length scale, L, and is defined as Re = VL/ν, where ν stands for
the kinematic molecular viscosity of the fluid. The SGS stress tensor, τ = ũu − ũũ, is the result of
filtering the Navier-Stokes equations. It requires to be modeled. In the present study an eddy-viscosity
assumption was adopted. In particular, we utilized the Wall-Adapting Local Eddy-viscosity (WALE)
model, based on the square of the gradient tensor of the resolved velocity field. Details about this SGS
model can be found in Nicoud and Ducros (1999). The forcing term appearing as last quantity in the
momentum equation was utilized in the present study to enforce the no-slip boundary condition on the
surface of the body “immersed” within the flow, adopting an Immersed-Boundary (IB) methodology.
This technique does not require the Eulerian grid, where the Navier-Stokes equations are resolved,
to conform the geometry of the body, which is represented by a suitable Lagrangian grid, free to
move across the former during the advancement of the solution in time. The boundary conditions
are enforced on the surface of the Lagrangian grid by means of a local velocity reconstruction at the
points of the Eulerian grid of interface with the Lagrangian grid. This reconstruction is based on the
no-slip requirement on the body and the solution of the flow at the fluid points of the Eulerian grid
in the vicinity of the interface points. The quantity f is then computed in such a way to enforce that
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velocity reconstruction at the interface points of the Eulerian grid. More details on the particular
implementation of the IB methodology can be found in Balaras (2004) and Yang and Balaras (2006).

Eqs. 1 and 2 were resolved on a staggered cylindrical grid. Their discretization in space was based
on second-order central differences. Their advancement in time was carried out using a fractional-
step method (Van Kan, 1986). For the discretization in time of all convective, viscous and SGS
terms of radial and axial derivatives the explicit three-step Runge-Kutta scheme was utilized. The
implicit Crank-Nicolson scheme was adopted instead for all terms of azimuthal derivatives, to avoid
prohibitive stability restrictions on the size of the time step, arising from the strong anisotropy at
the axis of the cylindrical grid. The Poisson problem stemming from the continuity condition was
resolved using trigonometric transformations along the periodic azimuthal direction, decomposing the
original epta-diagonal system of equations into a series of penta-diagonal systems. Then, an efficient
direct solver (Rossi and Toivanen, 1999) was utilized to invert each of them. More details on the
overall Navier-Stokes solver are reported in Balaras (2004) and Yang and Balaras (2006). Recent
applications in the field of renewable energy can be found in Posa (2019), Posa (2020a), Posa (2020b),
Posa and Broglia (2021a), Posa and Broglia (2021b).

Figure 1. Lagrangian grid representing the simulated geometry.

3 COMPUTATIONAL SETUP

LES was utilized to simulate the rotor of an axial-flow hydrokinetic turbine, composed of three blades.
Details on the geometry can be found in the work by Gaurier et al. (2015), who reported also exper-
iments on the global performance of the turbine in the framework of a Round Robin study. For the
discretization of this geometry we adopted a Lagrangian grid composed of about 75,000 triangles. It
is shown in Fig. 1. The filtered Navier-Stokes equations were resolved on a cylindrical grid consisting
of about 1.9 billion points. We distributed 900× 1026× 2050 points across the radial, azimuthal and
axial directions, respectively. Grid spacing was uniform along the azimuthal direction, while stretch-
ing was exploited along the radial and axial directions, in order to cluster grid points in the regions
of interest, which are that swept by the rotor blades and that of the wake flow. The computational
domain extended 2.5 and 7 diameters upstream and downstream of the rotor plane, respectively, while
its radial size was of 6 diameters. At the inflow and outflow boundaries uniform free-stream velocity
and convective conditions were prescribed, while at the lateral cylindrical boundary a slip wall was
utilized to mimic free-stream conditions.
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We selected for our simulations values of tip speed ratio and Reynolds number for which measurements
were available from the work reported by Gaurier et al. (2015). The tip speed ratio is defined as
TSR = ΩR/U∞, where Ω is the rotational speed of the turbine, R the radius of its rotor and U∞ the
free-stream velocity. In this study it was selected equal to TSR = 5.0. The Reynolds number, based
on the diameter of the turbine and the free-stream velocity, was equal to Re = DU∞/ν = 5.6× 105.

The computations were carried out enforcing a constant value of CFL = 1.0, defining the step of
advancement in time based on the instantaneous solution of the flow. This resulted in a very fine
resolution in time, equivalent to a rotation of the blades of only 0.076◦ per time step. Due to the
substantial computational effort, this study was performed in a HPC environment, using a parallel
solver and dividing the overall flow problem across 2,048 cores of a distributed-memory cluster (Joliot-
Curie KNL, TGCC, CEA, France).

Below the results of our computations will be presented both as ensemble-averaged and phase-averaged
statistics. The former were computed on the same stationary, cylindrical grid where the filtered Navier-
Stokes equations were resolved, while the latter on a cylindrical grid rotating together with the rotor,
with the purpose of extracting the coherence of the structures shed from its blades, especially the
tip vortices. In the following ensemble- and phase-averaged quantities will be indicated as · and ·̂,
respectively. It should be also noted that for simplicity the symbol ·̃ for the filter operator will be
dropped, assumed that all results reported below will refer to resolved quantities. For the achievement
of statistically steady conditions of the wake flow, the solution was developed for two flow-through
times, corresponding to about 30 rotations by the turbine. A flow-through time is the time required
by the free-stream to cross the whole computational domain. Then, all statistics were computed
on the fly, considering all instantaneous realizations of the numerical solution, with the purpose of
maximizing the size of the statistical sample and minimizing the storage burden. Statistical sampling
was carried out during 10 additional rotations. It is also worth noting that in the following discussion
all coordinates will be defined in a frame having its origin placed at the intersection between the rotor
plane and the axis of the turbine, corresponding to the z-axis, which was oriented along the direction
of the free-stream.

Figure 2. Comparison between present LES computations and measurements by Gaurier et al. (2015) on the
time-averaged values of thrust and power coefficient in the left and right panels, respectively.

4 COMPARISONS WITH THE EXPERIMENTS

As discussed above, Gaurier et al. (2015) conducted measurements on thrust, T , and torque, Q, for a
turbine having the same rotor as the one considered in the present study. Therefore, here we report
comparisons dealing with the time-averaged values of thrust and power coefficients, defined below:

CT =
T

1

2
ρSU2

∞

CP =
QΩ

1

2
ρSU3

∞

, (3)

where ρ is the density of the fluid (water) and S = πR2 is the rotor frontal area.
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Figure 3. Error of the present LES computations, relative to the measurements by Gaurier et al. (2015), on
the time-averaged values of thrust and power coefficient in the left and right panels, respectively.

It should be noted that in the present computational study we simulated the rotor geometry only,
not including the vertical support required in the experiments by Gaurier et al. (2015). In addition,
two different hub geometries were considered between experiments and computations. While hub
and support do not provide a significant contribution to torque, this is not the case for thrust, since
the drag generated by both of them cannot be neglected. However, we were able to overcome this
issue, since measurements were available also for the drag coefficient generated by the hub and the
support in absence of blades. Therefore, for comparison purposes, we corrected the values of thrust
coefficient reported in Gaurier et al. (2015), by removing that contribution of drag. In a similar way,
the values of CT and CP we report here from the present computations take into account the forces and
moments acting on the surface of the blades only, excluding the component from the surface of the hub.
These results are provided in Fig. 2. Measurements were conducted in the Round Robin campaign by
Gaurier et al. (2015) at four facilities, two flume tanks (FT) and two towing tanks (TT), respectively.
They were carried out at the Kelvin Hydrodynamic Laboratory (KHL) of the Strathclyde University in
Glasgow, the French Research Institute for Exploitation of the Sea (IFREMER) at Boulogne sur mer
and the Marine Technology Research Institute (INSEAN) in Rome. In Fig. 2 the label EXP(AVG)
indicates the average across the four experiments. The agreement of LES with the measurements
was found very good, as shown also in Fig. 3, where the error of the computations, relative to each
experiment, is reported for both thrust and power coefficients. The error relative to the average across
the four experiments is below 3%. Actually, it is biased towards larger values by the dispersion of the
measurements, increased especially by those in the towing tank at KHL for the thrust coefficient and
those in the flume tank at INSEAN for the power coefficient. In particular, the values for CT and CP

from LES keep always within the range defined by the experiments.

5 INSTABILITY OF THE TIP VORTICES

The wake shed by the rotor is characterized by strong helical tip vortices, whose instability was
found to play a crucial role in the process of wake development and in particular in the mechanism
of momentum recovery within the wake core. The tip vortices are illustrated in Fig. 4 by means
of instantaneous isosurfaces of pressure coefficient, colored by vorticity magnitude. The pressure
coefficient was defined as cp = (p−p∞)/(0.5ρU2

∞
), where p∞ stands for the free-stream pressure. Fig. 4

shows that the tip vortices are very coherent and their helical trajectory very stable within the near
wake. However, when they develop instabilities, they start deviating substantially from their helical
trajectory, initiating mutual inductance. The latter amplifies the phenomena of instability, leading
to very complex trajectories, leapfrogging and eventually to breakdown of the large tip vortices into
smaller structures. Fig. 4 shows also that in the region just downstream of the rotor plane the tip
vortices experience a shift towards outer radii, corresponding to the expansion of the wake resulting
from the deceleration of the flow produced by the turbine. Then, the tip vortices develop downstream
across helical trajectories of constant radius, before the development of evident instability phenomena.
When the latter occur, the smaller structures originating from the break-up of the tip vortices move
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Figure 4. Instantaneous visualization of the tip vortices via isosurfaces of pressure coefficient (cp = −0.4).
Colors for the vorticity magnitude, scaled by U∞/D.

towards inner radii. This phenomenon is illustrated in more detail in the visualization of Fig. 5.

In Fig. 5 the second invariant of the velocity gradient tensor, Q, was utilized to extract the coherence
within the wake from an instantaneous realization of the flow. In particular, this quantity was found
well-suited to identify the small structures originating from the instability of the large tip vortices.
The near wake is dominated by the tip vortices and features a small density of coherent structures,
with the exception of its core, which experiences the early instability of the hub vortex, originating
a wealth of small structures. However, in the present case the hub vortex was found to play a quite
limited role in the process of wake development. As suggested by the visualization in Fig. 4, when the
tip vortices experience instability, the smaller structures originating from their break-up start moving
towards inner radii. This behavior indicates, as demonstrated later, the onset of the process of wake
contraction and recovery. It is triggered by the instability of the tip vortices and promoted by both
radial advection and turbulent transport from the free-stream into the wake core.

Figure 5. Instantaneous visualization of the tip vortices via isosurfaces of the second invariant of the velocity
gradient tensor (QD2/U2

∞
= 1, 000). Colors for the vorticity magnitude, scaled by U∞/D.

Additional information on the instability of the tip vortices is provided in the detail of Fig. 6. There, a
higher value (in magnitude) of the pressure coefficient was considered, compared with Fig. 4, with the
purpose of better isolating the core of the tip vortices. As discussed by Widnall (1972), three mecha-
nisms of instability can be identified: short-waves, long-waves and mutual induction. The short- and
long-waves instabilities, resulting in deviations from the theoretical helical trajectory, gradually grow
as the tip vortices move downstream. We actually verified, reconstructing carefully the development of
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Figure 6. Instantaneous visualization of the tip vortices via isosurfaces of pressure coefficient (cp = −0.8).
Detail of the region of instability development and identification of its three major mechanisms: long-waves
instabilities, short-waves instabilities and mutual inductance across tip vortices. Colors for the vorticity mag-
nitude, scaled by U∞/D.

the tip vortices from instantaneous realizations of the solution, that small fluctuations of their trajec-
tory are present since their onset, but these deviations are initially too small to be distinguishable from
their visualization. However, Fig. 6 shows that they become soon well distinguishable, leading also to
mutual inductance between tip vortices, having the effect of further amplifying the other mechanisms
of instability, resulting quickly in the break-up of the tip vortices.

Figure 7. Instantaneous visualization of the tip vortices via isosurfaces of the second invariant of the velocity
gradient tensor (QD2/U2

∞
= 500). Detail of the near wake. Colors for the vorticity magnitude, scaled by

U∞/D.

A detail of Fig. 5, dealing with the near wake of the turbine, is considered in Fig. 7, where actually
a smaller value of Q was selected. It is focused on the small structures, developing at the outer
boundary of the wake between neighboring tip vortices. They result from the shear between tip
vortices, which was found to play an important role in accelerating the process of instability, as
discussed in Posa et al. (2021). They become stronger as the wake develops downstream and populate
the region where the shear layer shed from the trailing edge of the blades generates a connection
between consecutive tip vortices. The latter have indeed a larger pitch, compared to the wake shed by
each blade. Therefore, as they move downstream, they come closer to the wake of the preceding blade,
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which works as a “bridge” between neighboring tip vortices. The resulting shear promotes turbulence
production and contributes to the overall process of instability. A more in depth analysis about this
point is reported by Posa et al. (2021).

Figure 8. Ensemble-averaged streamwise velocity on a meridian plane through the axis of the turbine. Values
scaled by U∞.

6 WAKE RECOVERY

As discussed above, the instability of the tip vortices starts the process of wake contraction and
momentum recovery. As long as the tip vortices keep coherent, they behave as a “shield” at the
outer wake boundary, preventing the penetration of higher-momentum fluid from the free-stream into
the wake core (Lignarolo et al., 2015). This is shown in Fig. 8, where ensemble-averaged contours
of streamwise velocity, uz, are reported over a meridian plane through the wake axis. Across the
near wake no recovery is observed and the wake boundary experiences a displacement towards outer
radii. However, when the instability of the tip vortices develops, the wake boundary moves towards
inner radii, as a result of the free-stream momentum beginning to contribute to recovery downstream
of the turbine, where the streamwise velocity eventually starts growing. In particular, in Fig. 8 the
black arrows indicate the streamwise location at the wake boundary where the radial velocity becomes
negative, meaning that the free-stream flow is able to begin the process of momentum replenishment
within the wake of the turbine.

The correlation between the instability of the tip vortices, the development of radial inward flows and
the process of momentum recovery is illustrated in more detail in Fig. 9. The top panel of Fig. 9
shows ensemble-averaged contours of radial velocity, ur. Isolines for the radial velocity are reported in
white, with the thickest one corresponding to values of zero velocity, separating the upstream region
of wake expansion from the downstream region of wake contraction. Also the isolines for a value of
pressure coefficient ĉp = −0.3 are shown in black from the phase-averaged statistics. They allow the
identification of the core of the tip vortices, up to the development of instability phenomena. The
isolines of pressure coefficient display also the signature of the hub vortex within the wake core, which
is actually lost very quickly downstream of the rotor plane, as discussed above. Before instability,
the tip vortices are synchronized with the rotation of the turbine, therefore phase-averaging is able
to isolate them. After instability, this synchronization is lost and eventually the tip vortices break
up into smaller structures, so they cannot be isolated anymore from the phase-averaged statistics of
the flow. The top panel of Fig. 9 is very clear in demonstrating that, upstream of the instability of
the system of tip vortices the radial velocities at the wake boundary keep positive, the wake is still
expanding and the wake core does not start to recover yet, as also shown in Fig. 8. In contrast, when
the tip vortices develop instability, the orientation of the radial velocity at outer radii changes: the
higher-momentum fluid populating the free-stream starts moving towards the wake core, beginning
the process of wake recovery.

Additional evidence of the correlation between the instability of the tip vortices and wake recovery
is illustrated in the bottom panel of Fig. 9. There the phase-averaged contours of root-mean-squares
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Figure 9. Contours of ensemble-averaged radial velocity (top panel) and phase-averaged root-mean-squares
of pressure coefficient (bottom panel) on a meridian plane through the axis of the turbine. In the top panel
white and black isolines for the ensemble-averaged radial velocity and for a phase-averaged value of pressure
coefficient ĉp = −0.3, respectively. In the bottom panel white and blue isolines for an ensemble-averaged value
of radial velocity ur = 0 and a phase-averaged value of pressure coefficient ĉp = −0.3, respectively. Radial
velocity scaled by U∞.

of pressure coefficient are reported, again with white isolines of ensemble-averaged radial velocity
ur = 0 and blue isolines of phase-averaged pressure coefficient ĉp = −0.3. The contours show that
the signature of the tip vortices grows in size. This phenomenon is due to their growing instability,
resulting in increasing oscillations relative to the mean helical trajectory, smearing the footprint of the
vortex core within the phase-averaged statistics of the flow. In addition, it is interesting to notice that,
as the wake develops downstream, the areas of large pressure fluctuations become elongated across
the direction of shear with the neighboring wake, which is actually the phenomenon already observed
above in Fig. 7 by means of the Q-criterion. As demonstrated by the behavior of the radial velocity at
the wake boundary, also in the bottom panel of Fig. 9 it is clear that, as long as the tip vortices keep
coherent and roughly synchronized with the rotation of the blades, they prevent the free-stream flow
from contributing to momentum replenishment at inner radii. Then, when their instability is fully
developed the latter process can eventually start.

Figure 10. Ensemble-averaged streamwise velocity, radial velocity and turbulent kinetic energy at r = R (left
panel) and averaged across the region 0 < r < R according to Eq. 4 (right panel).

Fig. 10 shows the streamwise evolution of the ensemble-averaged values of streamwise velocity, ra-
dial velocity and turbulent kinetic energy at the boundary of the extraction area and their averages
across the extraction area on the left and right panels, respectively. The extraction area is defined at
each streamwise coordinate as the projection of the rotor area along the direction of the free-stream.
Therefore, the left panel of Fig. 10 shows the ensemble-averaged values at the radial coordinate r = R.
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In the right panel of Fig. 10 the average of the generic quantity F (in this case uz, ur and k) was
computed as:

AF(z) =
1

R

∫ r=R

r=0

F(r, z)dr, (4)

where F is only a function of the radial and streamwise coordinates, since ensemble averages are
axisymmetric. In both panels of Fig. 10 the left vertical scale reports the values for the streamwise
and radial velocity components, while the right vertical scale those for the turbulent kinetic energy.
It should be also noted that, for clarity of visualization, the values of radial velocity were multiplied
by a factor 5.

The left panel of Fig. 10 shows that up to 2.5 diameters downstream of the rotor plane the radial
velocity at r = R keeps positive. Actually, ur is very large at z/D = 0, because of the blockage
generated by the rotor. Then, it experiences a sharp decrease. Interestingly, the streamwise velocity
starts growing slightly upstream of the inversion of the radial velocity at the wake boundary. For the
turbulent kinetic energy this increase is even more evident and already well distinguishable starting
at z/D = 1.0. The latter is due to the growing instability of the tip vortices. Therefore, turbulent
transport is already contributing a mild recovery of streamwise momentum at the wake boundary
when the radial velocity is still positive. However, wake recovery becomes much more significant when
the full development of the instability of the tip vortices triggers wake contraction and inward radial
flows, producing also an additional substantial increase of the levels of turbulent kinetic energy and
turbulent mixing between the higher-momentum fluid within the free-stream and the lower-momentum
fluid populating the wake. Both turbulent kinetic energy and the negative radial velocity achieve their
maxima at about 4 diameters from the rotor plane, which is roughly also the location of the fastest
increase of streamwise velocity, thanks to both radial advection and turbulent transport. Further
downstream, due to the decline of the radial gradients at r = R, both radial flows and turbulence
undergo a decrease, resulting into a reduction of the rate of recovery of streamwise velocity.

In the right panel of Fig. 10 similar trends are reported. However, it is possible to notice a delay
of the phenomena discussed above with reference to the left panel, since the results visualized in the
right panel of Fig. 10 deal with the average across the whole extraction area: turbulent kinetic energy
starts growing only at about two diameters downstream of the rotor plane, while up to z/D ≈ 3.0
the streamwise velocity keeps decreasing and the radial velocity does not switch to negative values.
When turbulent mixing and radial advection are already producing a mild momentum recovery at
the wake boundary, its core is still not affected. In the present case, the comparison between the
left and right panels of Fig. 10 shows that this condition occurs between 2.0 < z/D < 3.0. Further
downstream turbulent transport and radial advection are eventually able to produce a significant
momentum replenishment also within the wake core.

7 CONCLUSIONS

A high-fidelity Large-Eddy Simulation on the rotor of an axial-flow hydrokinetic turbine was con-
ducted, using a computational grid at least an order of magnitude finer than in similar studies currently
available in the literature. Results were utilized to reveal the role of the tip vortices and their instability
in the process of wake recovery. It was verified that, as long as the tip vortices keep coherent, they work
as a “shield” to the penetration of the higher free-stream momentum into the wake core. However,
when the instability of the system of tip vortices fully develops, a significant momentum replenishment
is produced. This is associated with both radial advection and turbulent transport. The former is due
to radial inwards flows, the latter to the turbulent mixing phenomena triggered by the destabilization
of the tip vortices. The present results are consistent with the behavior observed in earlier experi-
mental studies, where higher levels of free-stream turbulence, accelerating the process of instability of
the tip vortices, promoted a faster wake development (Mycek et al., 2014a; Ouro and Stoesser, 2019;
Vinod and Banerjee, 2019) and beneficial effects on the performance of downstream turbines in in-line
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configurations, thanks to the faster recovery of the wake of the upstream ones (Mycek et al., 2014b;
Gaurier et al., 2020; Ebdon et al., 2021).
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