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Abstract. The performance of surrogate-based optimization is highly affected by how the
surrogate training set is defined. This is especially true for multi-fidelity surrogate models, where
different training sets exist for each fidelity. Adaptive sampling methods have been developed
to improve the fitting capabilities of surrogate models, avoiding to define an a priori design
of experiments, adding training points only where necessary or most useful (i.e., providing
the highest knowledge gain) to the optimization process. Nevertheless, the efficiency of the
adaptive sampling is highly affected by its initialization. The paper presents and discusses a novel
initialization strategy with a limited training set for adaptive sampling. The proposed strategy
aims to reduce the computational cost of evaluating the initial training set. Furthermore, it
allows the surrogate model to adapt more freely to the data. In this work, the proposed approach
is applied to single- and multi-fidelity stochastic radial basis functions for an analytical test
problem and the shape optimization of a NACA hydrofoil. Numerical results show that the
results of the surrogate-based optimization are improved, thanks to a more effective and efficient
domain space exploration and a significant reduction of high-fidelity evaluations.

1 INTRODUCTION

Automatic shape optimization and uncertainty quantification offer rigorous and effective
mathematical approaches to the design and performance assessment of modern ships and ships’
subsystems. These methods generally require a large number of evaluations of one or more merit
factors. If these performance metrics are evaluated via high-fidelity computations, the compu-
tational cost can become prohibitively expensive and unaffordable for most users. Surrogate
models give a solution to this problem: computations are only performed in a few design points
or conditions and an interpolatory or regressive model is build based on these computations.
Shape optimization and uncertainty quantification are then performed using the surrogate model,
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which is inexpensive to evaluate. An even greater gain in efficiency is obtained through multi-
fidelity surrogate models, which combine computationally inexpensive low-fidelity simulations
with high-fidelity computations [7]. Multiple fidelities can be defined combining computations
performed with different physical models (e.g. Reynolds averaged Navier-Stokes equations and
potential flow) or with different accuracy (e.g. computations performed varying the grid size).

The performance of multi-fidelity surrogate models depends on several factors [3], such as
the presence of nonlinearities, the problem dimensionality, the noisy or smooth behavior of the
function, and the approach used for the definition of the training set. Numerical experiments
show that there is no unique optimal multi-fidelity approach: the best choice of the surrogate
model depends on the data being modeled. For example, a significant local variation of the
merit factors may require a high density of training data, the presence of noise may require
heavy filtering, and finally low-fidelity corrections are only useful when the low- and high-
fidelity data are sufficiently correlated (similar). The first two issues led the authors to adopt
solution-adaptive sampling for the training points [11] and automatically tuned noise filters
[15]. Obviously, these methods achieve better performance if a larger computational budget is
available.

Here, the multi-fidelity model is based on a surrogate model of the low-fidelity solutions and
a discrepancy surrogate model based on the difference between high- and low-fidelity solutions.
Specifically, the surrogate model is based on stochastic radial-basis functions (SRBF) with power
kernel. In the authors’ previous work, the initial training set for starting the surrogate-based
optimization is defined using 2D + 1 samples where D is the design space dimension. The
training points are placed in the center of the domain and the center of the boundaries, for all
the fidelities. This initialization approach requires a considerable computational cost only for
the initialization.

The objective of the present work is to introduce a new approach for the definition of the
initial training set for surrogate-based optimization. The proposed approach reduces the com-
putational cost of the initialization making available a larger budget for the adaptive sampling
of the training points. Furthermore, less information is initially provided to the surrogate model
in order to have it freely adapt to the data. The new approach uses only one initial point for
all the fidelities except for the lowest. When a single training point is available, the surrogate
model prediction is an extrapolation based on that single training point. The power kernel used
in the SRBF lacks a compact support, as a consequence the extrapolated prediction may not
be well correlated with the desired function behavior, negatively affecting the adaptive sam-
pling. Although other kernels exist with compact support, the SRBF with power kernels is
robust, showing good results for several applications [15] and is preferred here. Therefore, a
constraint is imposed on both the surrogate model prediction and the associated uncertainty
when an extrapolation is performed, to improve the adaptive sampling. The proposed initial-
ization approach is assessed for an analytical test problem and a simulation-based optimization
problem: the drag-coefficient minimization of a NACA hydrofoil. For both problems, one and
three fidelities are used and the results are compared with the previous initialization approach
[15]. The simulations are performed with the unsteady RANS solver ISIS-CFD [8], developed
at Ecole Centrale de Nantes/CNRS and integrated in the FINE/Marine simulation suite from
NUMECA Int. Mesh deformation and adaptive grid refinement are adopted, different fidelity
levels are defined by increasing the grid refinement.
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2 MULTI-FIDELITY APPROACH

Consider x ∈ RD as a design variables vector of dimension D. Let the true function f(x) be
assessed by N fidelity levels: the highest-fidelity level is f1(x), the lowest-fidelity is fN (x), and
the intermediate fidelity levels are {fi}N−1i=2 (x). Using ·̃ to denote surrogate model prediction,

the multi-fidelity (MF) approximation f̂i(x) of fi(x) (i = 1, . . . , N − 1) is the sum of the lowest-
fidelity surrogate and surrogates of the errors (inter-level errors or bridge-functions, ε̃) between
subsequent levels

f̂i(x) = f̃N (x) +
N−1∑
k=i

ε̃k(x). (1)

For each i-th fidelity level the training set is Ti = {yj , fi(yj)}Jij=1, with Ji the training set size.

The resulting inter-level error training set is defined as Ei = {yj , εi(yj)}Jij=1, where

εi(yj) = fi(yj)− f̂i+1(yj). (2)

Consider the surrogate model providing the prediction and the associated uncertainty. The
uncertainty Uf̃N of the lowest-fidelity prediction is considered as uncorrelated with the uncer-
tainty Uε̃k of the inter-level error predictions. Therefore, the uncertainty Uf̂i of the MF prediction

can be evaluated as (i = 1, . . . , N − 1)

Uf̂i(x) =

√√√√U2
f̃N

(x) +

N−1∑
k=i

U2
ε̃k

(x). (3)

2.1 Adaptive Sampling Method

The multi-fidelity surrogate model is dynamically updated by adding new training points.
First, a new training point x? is identified based on the aggregate-criteria adaptive sampling
(ACAS, see Fig. 1) presented in [11]. It aims to find points with large prediction uncertainty and
small objective function value. Accordingly, ACAS identifies a new training point by solving

the single-objective minimization x? = argmin
x

[
f̂(x)− Uf̂ (x)

]
. It may be noted that the ACAS

method is a special case of the lower-confidence bounding [2], with equally weighted contributions
of f̂ and Uf̂ . Once x? is identified, the fidelity to be evaluated needs to be selected. To achieve
this, the surrogate model prediction uncertainty vector is defined as

U ≡ {Uε̂1/β1, ..., Uε̂N−1
/βN−1, Uf̃N /βN}, (4)

where βi = ci/c1 with ci the computational cost associated to the i-th level and c1 the computa-
tional cost of the highest-fidelity. Then, the fidelity level to sample is k = maxloc(U), and the
new training point is added to the k-th training set Tk and to the lower-fidelity sets from k + 1
up to N .

2.2 Stochastic Radial Basis Functions

Given a (single-fidelity) training set T = {yi, f(yi)}Ji=1, the RBF surrogate model prediction
f̃ (x) is computed as the expected value (EV) over a stochastic tuning parameter of the surrogate
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Figure 1: Example of the adaptive sampling method using one fidelity: (a) shows the initial
surrogate model with the associated prediction uncertainty and training set; (b) shows the
position of the new training point and the new surrogate model prediction and its uncertainty.

model [12], τ ∼ unif[1, 3]

f̃ (x) = EV [g (x, τ)]τ , with g (x, τ) = EV [f ] +
M∑
j=1

wj ||x− cj ||τ , (5)

where wj are unknown coefficients, || · || is the Euclidean norm and cj are the RBF centers,
with j = 1, . . . ,M and M ≤ J . If the training set is not affected by numerical noise then exact
interpolation of the training set is imposed and the coefficients wj are computed by solving
Aw = (f − EV [f ]), with cj = yj (yielding M = J) and f = {f(yi)}Ji=1. If numerical noise
affects the training set then noise reduction is achieved by choosing a number of RBF centers
M smaller than the number of training points J , and cj coordinates are defined via k-means
clustering [4] of the training points. Hence, wj are determined with least squares regression by
solving w = (ATA)−1AT(f − EV [f ]). The optimal number of stochastic RBF centers (M?) is
defined by minimizing a leave-one-out cross-validation (LOOCV) metrics [15].

The uncertainty U
f̃

(x) associated with the SRBF prediction is quantified by the 95%-

confidence band using the cumulative density function of g(x, τ) [12].

3 INITIAL TRAINING SET AND BOUNDED SURROGATE MODEL

In this section a new approach for defining the initial training set is proposed. The new
method uses a reduced training set (RS), as opposed to the authors’ previous work where a full
training set (FS) was used. Both the RS and FS approaches can be used with single- or multi-
fidelity methods. Table 1 summarizes the RS and FS approaches for the single- and multi-fidelity
cases, respectively.

The challenge for the RS approach is to create a SRBF surrogate model which can handle
extrapolation. Using the RS approach, at the first iteration of the adaptive sampling the surro-
gate model prediction is an extrapolation based on the single training point available. Since the
SRBF with power kernel has a low accuracy when extrapolating, a bounded surrogate model
prediction and the associated uncertainty (both identified with the B subscript) are defined as

4



R. Pellegrini, J. Wackers, A. Serani, M. Visonneau, and M. Diez

Table 1: Comparison between the new reduced training set (RS) and the full training set (FS)

Approach N Fidelity level n. of training Training points
points placement

RS
1 1 1 Center of domain

> 1
from 1 to N − 1 1 Center of domain
N 2D+1 Center of domain and of the boundaries

FS
1 1 2D+1 Center of domain and of the boundaries

> 1
from 1 to N − 1 2D+1 Center of domain and of the boundaries
N 2D+1 Center of domain and of the boundaries

described in Algorithm 1. When one training point is available, the surrogate model predic-
tion and the associated uncertainty are set equal to the function value in the training point
f(x′). This approach is consistent with Eq. 5, where the expected value of the training set is
added to the radial basis functions thus providing non-zero prediction when only one training
point is available. When more training points are available, the surrogate model prediction
and the associated uncertainty are bounded only in regions of the domain far from these train-
ing points. Specifically, the definition of Uε̃Bi(x), as defined in Algorithm 1, stems from the
consideration that the error surrogates represent errors in the multi-fidelity approximation f̂ .
Therefore the average error can be used as reference for the surrogate model prediction un-
certainty when an extrapolation is performed. It may be noted that when multiple training
points are available, bounding the uncertainty according to Uε̃Bi(x) = min(Uf̃ ,EV[f ]) instead
of Uε̃Bi(x) = min(Uf̃ , 2EV[f ]) would be more consistent with the bounding applied when one
training point is available. Such bounding will be adopted in the future.

In Algorithm 1 a sigmoid-like function s(r) is used to provide a smooth transition between
the SRBF prediction and the bounded prediction

s(r) =
1

1 + eα(r−γ)
, (6)

where, for the present work, α = −75 and γ = 0.2. To define r, the smallest hyperrectangle
(whose edges are parallel to the Cartesian coordinated axis) containing the training points is
defined and r is the Euclidean distance of x from the hyperrectangle boundaries.

Figure 2 shows the first iteration of the RS and FS approaches for a mono-dimensional
example. In the single fidelity case the RS approach yields a constant surrogate model prediction
and associated uncertainty, see Fig. 2a. In the multi-fidelity case, the RS approach produces a
multi-fidelity prediction that only relies on the low-fidelity surrogate model to approximate the
trend of the desired function. Differently, the FS approach takes advantage also of the medium-
and high-fidelity evaluations. The RS approach produces an obviously less accurate prediction
in the first iteration but allows to preserve a reasonable trend while using only one evaluation
of the medium- and high-fidelity.

5



R. Pellegrini, J. Wackers, A. Serani, M. Visonneau, and M. Diez

Algorithm 1: Bounding of the SRBF prediction and associated uncertainty

if N = 1 then // Single-fidelity case

if J = 1 then // One training point available

f̃B(x) = f(x′) ;
Uf̃B (x) = f(x′) ;

else if J > 1 then // J training points available

f̃B(x) = f̃(x) [1− s(r)] + EV[f ]s(r) ;
Uf̃B (x) = min(Uf̃ , 2EV[f ]) ;

end

else if N > 1 then // Multi-fidelity case

if Ji = 1, i = 1, . . . , N − 1 then // One training point available

ε̃Bi(x) = ε(x′i) ;
Uε̃Bi(x) = ε(x′i) ;

else if Ji > 1, i = 1, . . . , N − 1 then // Ji training points available

ε̃Bi(x) = ε̃i(x) [1− si(r)] + EV[εi]si(r) ;
Uε̃Bi(x) = min(Uε̃i , 2EV[εi]) ;

end

end

4 TEST PROBLEMS

4.1 Analytical Test Problem

The analytical test problem is based on the Rosenbrock function with two variables, three
fidelities are considered (N = 3). The Rosenbrock function is a function defined using two
parameters a and b. The high-fidelity function f1 is a Rosenbrock function with a = 1 and
b = 100. The medium-fidelity function f2 is the additive combination of a Rosenbrock function,
with a = −2 and b = 50, with a second order function, see Eq. 7. Finally, the low-fidelity

(a) RS, single fidelity (b) FS, single fidelity (c) RS, multiple fidelities (d) FS, multiple fidelities

Figure 2: Example of the two initialization strategies, mono-dimensional function from [16].
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function f3 is a transformation of f1 by addition and multiplication of first order functions [10]

f1(x) = 100(x2 − x21)2 + (1− x1)2,
f2(x) = (−2− x1)2 + 50(x2 − x21)2 − 80− 0.5x10.5x2,

f3(x) = (f1(x1, x2)− 4− 0.5x1 − 0.5x2)/(10 + 0.25x1 + 0.25x2).

(7)

where x ∈ [−2.048, 2.048] ⊗ [−2.048, 2.048]. The functions are represented in Fig. 3, they are
challenging from the optimization viewpoint since the minimum is located in a narrow and flat
valley. Specifically, the minimum of f1 is in x = {1, 1} and equal to 0.

A synthetic computational cost is associated to the evaluation of each fidelity, the resulting
computational cost ratios are equal to β = {1, 0.1, 0.05}.

4.2 NACA Hydrofoil Optimization

This problem addresses the drag coefficient minimization of a NACA four-digit airfoil. The
following minimization problem is solved

minimize f(x) = CD(x), subject to CL(x) = 0.6, and to l ≤ x ≤ u. (8)

where x is the design variable vector; l and u are respectively the lower and upper bounds of the
design space; CD and CL are respectively the drag and lift coefficient. The equality constraint
on the lift coefficient is necessary in order to compare different geometries at the same lift force
(equal to the weight of the object), since the drag depends strongly on the lift. The simulation
conditions are: velocity U = 10 m/s, chord c = 1 m, fluid density ρ = 1, 026 kg/m3, with a chord
based Reynolds number Re = 8.41 · 106. The hydrofoil shape is defined by the general equation
for four-digit NACA foils [6]. In this work the design variables vector is defined as x = {t,m}
with t ∈ [0.030, 0.120] is the maximum thickness and m ∈ [0.025, 0.065] is the maximum camber
value with the maximum camber position fixed at p = 0.4. Numerical simulations are performed
with the RANS solver ISIS-CFD. Tests are run with one and three fidelity levels (N = 1, 3), see
Fig. 4.

ISIS-CFD is an incompressible unstructured finite-volume solver for multifluid flow. The
velocity field is obtained from the momentum conservation equations and the pressure field is

(a) f1 (b) f2 (c) f3

Figure 3: Test problem, the Rosenbrock function.
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(a) (b) (c)

Figure 4: NACA hydrofoil computational grids for ISIS-CFD: (a) Fine grid, 12.8k cells, (b)
Medium grid, 5.7k cells, and (c) Coarse grid, 3.6k cells.

extracted from the mass conservation constraint transformed into a pressure equation. These
equations are similar to the Rhie and Chow SIMPLE method [9], but have been adapted for
flows with discontinuous density fields. The unstructured discretization is face-based. While
all unknown state variables are cell-centered, the systems of equations used in the implicit time
stepping procedure are constructed face by face. Therefore, cells with an arbitrary number of
arbitrarily-shaped constitutive faces are accepted. The code is fully parallel using the message
passing interface protocol. A detailed description of the solver is given in [8].

Computational grids are created through adaptive grid refinement (AGR) [13, 14], to optimize
the efficiency of the solver and to simplify the automatic creation of suitable grids. The AGR
method adjusts the computational grid locally, during the computation, by dividing the cells of
an original coarse grid. The decision where to refine comes from a refinement criterion, a tensor
field C(x, y, z) computed from the flow. The tensor is based on second derivatives of pressure and
velocity, which gives a crude indication of the local truncation errors. The grid is refined until
the dimensions dp,j (j = 1, 2, 3) of each hexahedral cell p satisfy ‖Cpdp,j‖ = Tr. The refinement
criterion based on the second derivatives of the flow is not very sensitive to grid refinement [14],
so the cell sizes everywhere are proportional to the constant threshold Tr.

For the MF optimization, grid adaptation is used to take into account the need for several
fidelities. The interest of this procedure is that different fidelity results can be obtained by
running the same simulations and simply changing the threshold Tr. Thus, it is straightforward
to automate the MF simulations. Highest- to lowest-fidelity simulations require about 17, 9,
and 5 minutes, respectively, of wall-clock time to converge. The resulting computational cost
ratios are equal to β = {1, 0.5, 0.3}.

5 NUMERICAL RESULTS

The performance of the method is assessed using three metrics. Specifically, the accuracy
of the surrogate model in the identification of the predicted minimum f̂(xmin) is quantified by
the prediction error (Ep); the error in the identification of the reference minimum f(x̌) in the
function space is quantified by the validation error (Ev); and the effectiveness of the surrogate
model in identifying the location of the minimum in the variable space is quantified by the
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location error (Ex)

Ep =

∣∣∣∣∣ f̂(xmin)− f1(xmin)

R1

∣∣∣∣∣ , Ev =

∣∣∣∣f1(xmin)− f(x̌)

R1

∣∣∣∣ , Ex =

√√√√ D∑
j=1

(
xmin,j − x̌j
uj − lj

)2

, (9)

where f1(xmin) is the verified minimum by a high-fidelity evaluation, R1 is the reference high-
fidelity function range, x̌ if the position of the reference minimum, and lj and uj (for j =
1, . . . , D) are the lower and the upper bounds of the variables domain, respectively. The per-
formance of the RS approach is compared with the performance of the FS approach at a fixed
computational budget equivalent to 45 high-fidelity simulations, for both problems.

(a) RS, first iteration (b) FS, first iteration

(c) RS, last iteration (d) FS, last iteration

Figure 5: Analytical problem. Results for the single fidelity case, response surfaces and training
sets for the two initialization approaches at the first and last iterations of the adaptive sampling.
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(a) Ep convergence (b) Ev convergence (c) Ex convergence (d) Training set size

Figure 6: Analytical problem. Results for the single fidelity case.

5.1 Analytical Test Problem

The evaluation of the analytical test is not affected by numerical noise, therefore an inter-
polative formulation of the SRBF is used. The computational costs associated with the initial
RS training sets are 1 for N = 1 and 1.35 for N = 3, while for FS the costs are 5 and 5.75,
respectively. The R1 value is the high-fidelity function range of the FS initial training set and
is equal to 3906.

Figure 5 shows the response surfaces with the training sets for the two initialization ap-
proaches using one fidelity. The response surface of the RS method is a constant flat surface
whereas for the FS approach a concavity is already evident, see Figs. 5a and 5b. At the last
iteration it is interesting to notice that the ACAS method with RS has explored the entire valley
where the minimum is located whereas with FS the ACAS method has partially explored the
valley and has then focused on the opposite side, see Figs. 5c and 5d.

Figure 6 shows the convergence of Ep, Ev, and Ex and the training set size for the two
initialization approaches, using one fidelity. Although several oscillations are present, the RS
approach achieves slightly better results than FS. Figure 6d shows that the ACAS method with
RS performs more sampling iterations than with FS.

Figure 7 shows the response surfaces with the training sets for the two initialization ap-
proaches using three fidelities. At the first iteration the surrogate model prediction with the
RS approach shows the same trend as with the FS approach. At the last iteration the ACAS
method with RS has explored the entire valley where the minimum is located. Differently, the
ACAS method with FS has partially explored the valley and did not perform any exploration
of the domain, see Figs. 7c and 7d.

Figure 8 shows the convergence of Ep, Ev, and Ex and the training set size for the two
initialization approaches, using three fidelities. While several oscillations are present, the RS
approach achieves better results than FS. Figure 8d shows that the ACAS method with RS
performs a significantly higher number of iterations than with the FS approach. This is due
to the smaller computational cost spent for the evaluation of the initial training set with the
RS approach. Furthermore, the ACAS method with RS uses a significantly lower number of
high-fidelity evaluations. It is interesting to notice that the FS approach uses the same number
of medium- and low-fidelity evaluations. This does not occur with the RS approach that uses
less medium-fidelity evaluations than FS. Finally, the ACAS method with RS performs a high-
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(a) RS, first iteration (b) FS, first iteration

(c) RS, last iteration (d) FS, last iteration

Figure 7: Analytical problem. Results for the three fidelity case, response surfaces and training
sets for the two initialization approaches at the first and last iterations of the adaptive sampling.

fidelity evaluation only after the 8-th iteration, showing that a partial exploration is initially
performed using only low- and medium-fidelity evaluations.

5.2 NACA Hydrofoil Optimization

The data pertaining to the NACA hydrofoil optimization with the ACAS method and the
FS approach are take from [15]. The computational costs associated with the initial RS training
sets are 1 for N = 1 and 3.03 for N = 3, while for FS the costs are 5 and 9.2, respectively.
The R1 value is the high-fidelity function range of the FS initial training set and is equal to
1.523E−3. It is known from [15] that this problem is affected by numerical noise, especially the
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(a) Ep convergence (b) Ev convergence (c) Ex convergence (d) Training sets size

Figure 8: Analytical problem. Results for the three fidelity case.

low-fidelity evaluations, therefore a least-squares regressive approach, as described in Section
2.2, is used.

Figure 9 shows the response surfaces with the training sets for the two initialization ap-
proaches, using one fidelity. The response surface of the RS method is a constant flat surface
whereas for the FS approach a concavity is already evident, see Figs. 9a and 9b. Figure 9c and
9d show the last iteration of the adaptive sampling, the RS approach has clustered the training
points in the region of the minimum with only one training point in the opposite side of the
domain (in {1, 1}), whereas the FS approach has performed also a considerable exploration of
the design space.

Figure 10 shows the response surfaces with the training sets for the two initialization ap-
proaches, using three fidelities. The two response surfaces at the first iteration are significantly
different, see Figs. 10a and 10b. Figures 10c and 10d show the last iteration of the adaptive
sampling method. The ACAS method with the RS approach did not sample the upper region
of the domain, where the drag coefficient is higher. Differently, the ACAS method with the FS
approach sampled also the upper corners of the domain. The response surface is mostly different
but for the region of the minimum, correctly identified from both approaches. It is worth noting
that the RS approach only adds one high-fidelity simulation to the initial training set, evaluating
it in the center of the region of the minimum. Differently, the FS approach adds two high-fidelity
simulations to the initial training set, evaluating them in the two corners of the lower region of
the domain. Table 2 summarizes the minimum position, value, and associated uncertainty and
the Ep and Ev metrics along with the training sets size. The RS approach identifies different
minima. The predicted minimum is significantly different among the approaches whereas all
the verified minima show an error, with respect to the reference, below 1%. The RS approach
shows with three fidelities shows the largest prediction error due to overfitting of the low-fidelity
training data, see Fig. 10c, which is the most affected from the numerical noise. Finally, the RS
approach uses the lowest number of high-fidelity evaluations.

6 CONCLUSIONS

A new approach is defined to reduce the computational cost of the training set initialization of
a surrogate-based optimization method, for both single- and multi-fidelity (MF). The proposed
approach is specifically developed for stochastic radial basis functions with power kernel (SRBF).
Reducing the computational cost of the initialization means that a larger computational budget is
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available for an adaptive sampling of the design space. Furthermore, less information are initially
provided to the surrogate model in order to have it freely adapt to the data. The computational
cost of the initialization is reduced in comparison with the initialization approach used in the
authors previous work. The previous initialization approach uses a full training set (FS) of
2D+1 samples, where D is the design space dimension, for all the fidelities. In the single-fidelity
case, the reduced training set (RS) uses one point as initial training set. In the multi-fidelity
case, the RS approach uses 2D + 1 points as training set only for the lowest (and cheapest to
evaluate) fidelity and one single point as initial training set for the other fidelities. When a

(a) RS, first iteration (b) FS, first iteration

(c) RS, last iteration (d) FS, last iteration

Figure 9: NACA hydrofoil optimization problem. Results for the single fidelity case, response
surfaces and training sets for the two initialization approaches at the first and last iterations of
the adaptive sampling.
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(a) RS, first iteration (b) FS, first iteration

(c) RS, last iteration (d) FS, last iteration

Figure 10: NACA hydrofoil optimization problem. Results for the three fidelity case, response
surfaces and training sets for the two initialization approaches at the first and last iterations of
the adaptive sampling.

single training point is available, the surrogate model prediction is an extrapolation based on
that single training point. The power kernel used in the SRBF lacks a compact support, as a
consequence the extrapolated prediction may not be well correlated with the desired function
behavior, negatively affecting the adaptive sampling. Although other kernels exist with compact
support, the SRBF with power kernels is robust, showing good results for several applications
and is preferred here. Therefore, a constraint is imposed on both the surrogate model prediction
and the associated uncertainty when an extrapolation is performed, to improve the adaptive
sampling. New training points are iteratively added by an adaptive sampling method based on
the surrogate prediction value, the associated uncertainty, and the computational cost associated
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to each fidelity.
The proposed initialization approach (RS) is assessed and compared to the previous (FS)

for an analytical test problem and a NACA hydrofoil optimization problem, both with one
and three fidelities. The comparison is provided for a fixed computational budget. A synthetic
computational cost is associated to each evaluation of the analytical test. Finally, the comparison
is based on three metrics to quantify the capability of the surrogated-based optimization to
converge towards the global optimum. The RS approach reduced the computational cost of
evaluating the initial training set by 76% for the analytical test problem and by 67% for the
NACA hydrofoil optimization.

The results of the analytical test problem show that the adaptive sampling method with the
RS approach uses less high-fidelity evaluations, especially in the early iterations, relying more
on low- and medium-fidelity evaluations for the identification of the region of interest. This is
due to the reduced data provided to the adaptive sampling method and to the bounding of the
uncertainty, that make the method not interested in exploring the extrema of the domain with
high-fidelity evaluations. For the NACA hydrofoil optimization problem, the adaptive sampling
method adds only one high-fidelity sample in the region of the minimum. Although this means
that the method is effective in using high-fidelity data only where they are most useful, this
also means that the flat region of minimum of the NACA problem is not completely explored.
This is most likely due to the numerical noise in the low-fidelity training set that is affecting the
adaptive sampling procedure.

Future work aims to investigate the effects of the RS approach on the adaptive sampling using
several analytical test problems. Specifically, the analytical test set defined within the NATO
STO Research Task Group AVT-331 on “Goal-driven, multi-fidelity approaches for military
vehicle system-level design” will be considered. Furthermore, an improved strategy to perform
regression with the SRBF in presence of numerical noise will be investigated in order to avoid
overfitting.
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Table 2: NACA hydrofoil optimization problem, summary of the results

Initial set N x1 x2 f̂min fmin |Ep|% |Ev|% J1 J2 J3
Reduced 1 0.4173 0.0000 7.2132E-3 7.2195E-3 0.41 0.52 45 - -

Full 1 0.3799 0.0000 7.2130E-3 7.2140E-3 0.01 0.03 45 - -

Reduced 3 0.4354 0.0000 7.0500E-3 7.2245E-3 11.45 0.85 2 22 105

Full 3 0.3615 0.0000 7.1616E-3 7.2182E-3 0.78 0.09 7 19 96

Reference 1 0.3776 0.0000 - 7.2116E-3 - - - - -
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design”.

REFERENCES

[1] Cai, X., Qiu, H., Gao, L., Wei, L. and Shao, X. (2017). Adaptive Radial-Basis-Function-
based Multifidelity Metamodeling for Expensive Black-Box Problems, AIAA journal 55, 7,
2424–2436.

[2] Cox, D. D. and John, S. (1992). A Statistical Method for Global Optimization, Proceedings
of 1992 IEEE International Conference on Systems, Man, and Cybernetics, 1241–1246.

[3] Fernández-Godino, G., Chanyoung Park, M., Kim, N. H., and Haftka, R. T. (2019). Issues
in Deciding whether to use Multifidelity Surrogates, AIAA Journal 57, 5, 2039–2054.

[4] Lloyd, S. (1982). Least Squares Quantization in PCM, IEEE transactions on information
theory , 28(2), 129–137.

[5] Mackman, T. J., Allen, C. B., Ghoreyshi, M. and Badcock, K. J. (2013). Comparison
of Adaptive Sampling Methods for Generation of Surrogate Aerodynamic Models, AIAA
journal 51, 4, 797–808.

[6] Moran, J. (2003). An Introduction to Theoretical and Computational Aerodynamics.
Courier Corporation.

[7] Peherstorfer, B., Willcox, K. and Gunzburger, M (2018). Survey of Multifidelity Methods
in Uncertainty Propagation, Inference, and Optimization, SIAM Review 60, 3, 550–591.

[8] Queutey, P. and Visonneau, M.(2007). An Interface Capturing Method for Free-Surface
Hydrodynamic Flows, Computers & Fluids, 36(9), 1481–1510.

[9] Rhie, C. M. and Chow, W. L. (1983). A Numerical Study of the Turbulent Flow Past an
Isolated Airfoil With Trailing Edge Separation, AIAA Journal, 17, 1525–1532.

[10] Rumpfkeil, M. P., and Beran, P. S. (2020). Multi-Fidelity, Gradient-enhanced, and Lo-
cally Optimized Sparse Polynomial Chaos and Kriging Surrogate Models Applied to Test
Problems, AIAA Scitech 2020 Forum, 0677.

[11] Serani, A., Pellegrini, R., Wackers, J., Jeanson, C.-E., Queutey, P., Visonneau, M. and Diez,
M. (2019). Adaptive Multi-Fidelity Sampling for CFD-based Optimisation via Radial Basis
Function Metamodels, International Journal of Computational Fluid Dynamics, 33(6-7),
pp. 237–255.

[12] Volpi, S., Diez, M., Gaul, N., Song, H., Iemma, U., Choi, K. K., Campana, E. F. and
Stern, F. (2015). Development and Validation of a Dynamic Metamodel Based on Stochastic
Radial Basis Functions and Uncertainty Quantification, Structural and Multidisciplinary
Optimization,51(2), 347–368.

[13] Wackers, J., Deng, G. B., Guilmineau, E., Leroyer, A., Queutey, P., and Visonneau, M.
(2014). Combined Refinement Criteria for Anisotropic Grid Refinement in Free-Surface
Flow Simulation, Computers and Fluids, 92, 209–222.

16



R. Pellegrini, J. Wackers, A. Serani, M. Visonneau, and M. Diez

[14] Wackers, J., Deng, G. B., Guilmineau, E., Leroyer, A., Queutey, P., Visonneau, M.,
Palmieri, A. and Liverani, A. (2017). Can Adaptive Grid Refinement Produce Grid-
Independent Solutions for Incompressible Flows?, Journal of Computational Physics, 344,
364–380.

[15] Wackers, J., Visonneau, M., Serani, A., Pellegrini, R., Broglia, R. and Diez, M. (2020).
Multi-Fidelity Machine Learning from Adaptive- and Multi-Grid RANS Simulations. 33rd
Symposium on Naval Hydrodynamics, Osaka, Japan.

[16] Wackers, J., Visonneau, M., Ficini, S., Pellegrini, R., Serani, R. and Diez, M. (2020).
Adaptive N-Fidelity Metamodels for Noisy CFD Data. AIAA AVIATION 2020 FORUM,
3161.

17


