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Abstract 

Shock-droplet interactions occur in a spectrum of high-speed propulsion systems involving 

liquid fuels. When the combustion chamber pressure is above the critical pressure of the fuel, 

transcritical behaviour involving the transition from liquid-like to gas-like states is observed. 

Our understanding of multiphase-shock interaction is significantly less developed than its gas-

phase counterpart (i.e., shock-bubble interaction) and is particularly limited at transcritical 

conditions. We consider the interaction of a shockwave with a liquid n-dodecane droplet 

exposed to a nitrogen environment at a supercritical pressure. A fully-conservative diffuse-

interface framework coupled with the Peng-Robinson equation of state is developed to 

accurately determine the state of the fluid as the shock propagates through the droplet. The 

shock-droplet interaction results show the development of interfacial instabilities and an axial 

jet. 
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Introduction 

The design of current and future energy conversion systems is shifting toward supercritical 

pressures to enable performance gain, lighter and more reliable systems for space [1-7], 

aviation [8-14], ground transportation [15-20], and power generation [21]. Understanding the 

vaporization, breakup, and combustion of the fuel droplets is critical when developing high-

pressure combustion devices [22-26]. Shock-droplet interactions occur in a spectrum of high-

speed propulsion systems involving liquid fuels. Key applications include ramjets and 

scramjets [27, 28]. In applications such as high-speed diesel injection, shock waves may be 

induced and interact with the fuel spray [29]. 

Shock-bubble and shock-droplet interactions have been the subject of many studies over the 

past decades [30-32]. The seminal work of Haas and Strutevant [30] revealed very complex 

phenomena occurring during shock interaction with helium and R22 refrigerant bubble. Later, 

these cases were numerically modelled highlighting the feature of the shock-bubble 

interactions [31]. Since then, many additional cases have been considered, including the 

bubble composition of SF6 and Krypton [33-36]. However, these studies are all conducted at 

atmospheric pressure and room temperature where the fluids are in a gaseous state. 

Understanding the disintegration of droplets impacted by shocks at supercritical conditions is 

relevant to liquid-fuelled scramjet engines during low hypersonic, i.e., start-up operations, and 

will inform the mixing and combustion behaviour of liquid fuel sprays in a spectrum of 

supercritical and high-speed propulsion systems, particularly in hypersonic flights. 

Although a better understanding of the sub- and supercritical conditions has been obtained by 

numerical and experimental efforts, there is still a critical gap in the knowledge on the 

transcritical conditions where the transition from liquid-like to gas-like behaviour occurs by 

crossing the pseudo-boiling line [37, 38]. At transcritical conditions, both subcritical (two-

phase) and supercritical (diffusion-controlled) behaviours might emerge [15, 20]. Classical 
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transcritical cases involve fuel injected at a pressure above the critical pressure. In the case 

of fuel injection into a combustion chamber, the fuel with temperature initially below the critical 

temperature is injected at supercritical pressure, mixes with the hot ambient air, and increases 

the temperature of the fuel. As the fuel is heated, it transitions from a liquid-like to gas-like 

supercritical fluid and crosses the Nishikawa Widom line (termed pseudo-boiling). At a higher-

temperature, the fuel will behave as an ideal gas when the compressibility factor is equal to 

unity – i.e., n-dodecane at 1100 K and 6 MPa. For the design of high-pressure and high-speed 

propulsion systems, it is of great interest to understand the behaviours of fuel droplets 

impacted by shockwave at pressures above the critical pressure. The lack of knowledge on 

multiphase shock-driven instabilities due to the dearth of detailed experimental data at such 

high pressure (temperature) is the main motivation behind this computational study that 

focuses on the shock interaction with fuel droplets at supercritical pressures. 

There are many reports on simulation of droplet/shock interactions using sharp-interface and 

diffuse-interface approaches at subcritical conditions [39-44]. However, there are only two 

reports that simulate the fuel droplet-shock interaction at transcritical conditions [45, 46]. To 

the authors’ knowledge, the underlying physics behind this problem have not been previously 

investigated. In the study of our previous work [46], we briefly considered the shock-interaction 

with an n-dodecane droplet in a nitrogen environment at near-critical conditions. It is important 

to note that the physics associated with a fluid near the critical point is significantly different 

from conventional liquid droplets or ideal-gas bubbles. For the shock-bubble interaction 

problem, the sphere of fluid is referred to as a bubble because it is in a gaseous state, typically 

an ideal gas. The term droplet is typically associated with a liquid sphere with significant 

surface tension effects. However, this differentiation breaks down for a supercritical fluid where 

gas-like and liquid-like properties better represent the state of the fluid [47]. Additionally, at 

supercritical conditions, surface tension is typically neglected. For this study, however, we use 

the term ‘droplet’ for the fuel sphere. In the present paper, we present the shock interaction 

with the supercritical fuel droplet by visualizing the shock characteristics and instability 

development. 

Methodology 

We consider a fully compressible (FC), inviscid, multiphase model. The governing equations 

for a diffuse-interface two-species system are given below: 
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where 
DY  is the mass fraction of the bubble/droplet fluid species,   is the density, u  is the 

velocity vector, p  is the pressure, E  is the total energy ( )2
2E e= + u , e  is the internal 

energy, and I  is the identity matrix. The mass fraction of the second species of the two-

component system is given by the mixture rule 1S DY Y= − .  The system of equations, Eqs. (1)

-(4), is closed using the PR-EoS [48] as follows 
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where T  is the temperature, 
UR  is the universal gas constant, 

mV  is the molar volume 

mV M = , M  is the molar mass, and a  and b  are coefficients that depend on the state and 

composition of the fluid. The PR-EoS is modified [46] to approximate the state of the fluid in 

the vapor dome region to increase the robustness of the numerical method. The parameters 

for the NASA polynomials that are used to determine the internal energy, enthalpy, and 

entropy were taken from Ref [49] 

This study uses an in-house, density-based, finite volume solver in C++ parallelized using 

domain decomposition and message passing interface (MPI) which is presented in [46]. In the 

same study, we introduced a hybrid (HY) numerical method, which hybridizes the FC 

procedure with the DF method [46]. HY method is chosen for this study as our earlier study 

proved, the HY method can significantly reduce the magnitude of pressure oscillation while 

limiting the loss of energy conservation when a shock impacts the nitrogen-n-dodecane 

interface. To avoid the interaction of the characteristic fields and increase the robustness and 

stability of the solver, we reconstruct the primitive variables in the characteristic space – 

Characteristic-wise reconstruction (CW) [46, 50-53]. 

The temporal discretization of Eqs. (1)-(4) uses the third-order total-variation-diminishing 

Runge–Kutta scheme (RK3-TVD) [54]. The Godunov flux is determined using the Harten–

Lax–van Leer-contact (HLLC) approximate Riemann flux [50, 55, 56]. Additionally, we make 

use of a maximum-principle-satisfying and positivity-preserving flux limiter to help ensure the 

boundness of the mass fraction and the positivity of density and pressure [55-57].  

WENO5-CW reconstruction is performed in the axisymmetric cylindrical coordinates – r, z (see 

Appendix C of [58] for more details). We also apply the artificial interface thickening method 

as discussed in our earlier study [46] to the initial condition of the droplet interface in 

axisymmetric cylindrical coordinates with 2 = , where   is the number of finite volume cells 

the interface is initially smeared over. The interface thickening reduces the jump in properties 

between cells, reducing pressure oscillations and increasing the numerical stability [46]. 

Additionally, interface thickening reduces the loss in energy conservation when used with a 

quasi-conservative method like the HY method [46]. Because the droplet is defined on a 

uniform Cartesian mesh, this interfacial thickening also helps provide the smooth curvature of 

the initial droplet shape.  

Results and Discussion 

We consider the interaction of a shock wave in a nitrogen environment with a droplet of n-

dodecane at supercritical pressure in a liquid-like state to showcase the transcritical shock 

interaction in 2D axisymmetric cylindrical coordinates. In this study, we focus on the n-

dodecane/nitrogen interface as n-dodecane has been extensively used as a diesel fuel 

surrogate in the combustion community.  

The shock wave travels from right to left impacting the droplet, where the droplet diameter is 

5 cm, see Figure 1. The computational domain is shown in Figure 1 where the axial length is 

50 cm (from z=-25 to z=25cm) and with a radius of 30 cm (which is approximately 
06D  as is 

the suggested dimension in Ref. [59]). The size of the computational domain is sufficiently 

large so that potential erroneous reflections from the non-reflective boundaries will not interact 

with the droplet throughout the simulation. The computational domain consists of a uniform 

mesh from 16 to 16 cmz = −  and from the axis of symmetry to 5 cmr =  to increase the 

computational speed of the simulation where the cell dimensions are 0.23 mmz r   . The 

mesh then grows at a rate of 10% in the z-direction to the outer boundaries. Due to the axis 

of symmetry boundary condition, only the top half of the depicted computational domain is 
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required for the simulation (Figure 1). A transmissive BC is used at the other boundaries (left, 

right, and outer boundaries).  

 

 

Figure 1. Depiction of the shock-droplet case. The depicted cell size is ten times larger than the cell size used in 

the simulations ( 0.23 mmz r    ). Due to the axis of symmetry boundary condition, only the top half of the 

depicted computational domain is required for the simulation. 

Here we show the key flow features of the shock interaction with a fuel droplet where the 

droplet is initially at a pressure of 6 MPa and a temperature is 650 K. The critical temperature 

of n-dodecane is 658.1 K and the critical pressure is 1.82 MPa. In this case, the n-dodecane 

is at a supercritical pressure near the pseudo-boiling line (close to the critical temperature). 

For a Mach 1.2 shock wave, the initial state of the three regions, (1) pre-shock, (2) post-shock, 

and (3) n-dodecane droplet, are summarized below: 

   ( )
( )

( )

( )

3

0,  0,  6,  650,  30.46                    pre-shock

,  / s ,  [MPa],  K , / 0,  160.3,  9.096,  736.2,  40.38  post-shock

1,  0, 6,  650,  419.9                 droplet

D zY u m p T kg m




  = − 
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Note that 
zu  is the velocity component in the z-direction and the initial velocity in the r-direction 

( )ru  is zero everywhere. The shock wave, which is initially at z=10 cm, travels to the left 

towards the droplet and t  begins when the shock first impacts the droplet interface (at z=7.5 

cm).  
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Once the shock impacts the droplet, the vertical incident shock above and below the droplet 

is joined by two shock waves: (1) the refracted shock that lies within the droplet and (2) the 

reflected shock that is outside the droplet (Figure 2(a)). As time progresses, the refracted 

shock travels through the undisturbed region and converges towards the downstream 

interface (Figure 2(b)). The passage of the refracted shock across the downstream interface 

results in a transmitted shock and the reflection of a rarefaction wave, Figure 2(c). The 

acoustic impedance mismatch experienced by the refracted shock at the downstream 

interface results in the internal reflection of a rarefaction wave [32]. As time progresses, 

interfacial instabilities begin to grow at the interface between the fuel and the surrounding 

nitrogen, Figure 2(d). After the shock-droplet interaction, an axial jet develops outwards at the 

downstream interface, Figure 2(c)-(d). 

 

Figure 2. Numerical schlieren images for the Mach 1.2 shock/droplet interaction after (a) 24 µs, (b) 76 µs, (c) 216 

µs, and (d) 296 µs. 

The axial jet is a result of the refracted shock wave convergence (Figure 3). The refracted 

shock convergence reaches a focal point just inside the droplet near the downstream interface. 

Figure 3(a) shows the point in time where the refracted shock has fully wrapped around the 

undisturbed region and is near the focal point. Figure 3(b) shows the axial pressure distribution 

before shock convergence, where the leftward traveling shock has a significantly higher 

pressure of about 18 MPa. There is no more undisturbed region once the shock converges 

(Figure 3(c)) and the peak pressure at the axis near the downstream interface reaches about 
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30 MPa (Figure 3(d)). After the shock convergence, the shock wave is reflected as a strong 

rarefaction wave as seen in Figure 3(e)-(f) where the pressure drop is large (about 5 MPa). 

 

Figure 3. The numerical schlieren images ((a), (c), (e)) and the corresponding axial pressure distributions ((b), 

(d), (f)) show the shock convergence resulting in a localized high-pressure region inside the downstream droplet 

interface. The pressure peak in (d) causes the formation of an axial jet. 

 

Conclusions 

In this paper, we developed a model to simulate the shock wave interaction with a fuel droplet 

at supercritical pressure. The shock-droplet resulted in various interesting flow features, 

including axial jetting and interfacial instability. The model developed will be used in future 

studies to further investigate the physics of the transcritical shock-droplet interaction. 
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