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Abstract 
For quality control of medical spray nozzles, control systems must be capable of 
characterizing sprays based on droplet size distribution. Image analysis methods are a 
powerful tool for characterizing a spray very quickly and with a high degree of confidence. 
This work aims to develop a sensor system for the characterization of sprays via 
Convolutional Neural Networks (CNN), a subcategory of machine learning. Images of 
sprays conducted by a CCD camera, and the drop size distribution measured via laser 
diffraction. Subsequently, CNNs have been successfully trained to assign each image to 
one five spray categories, each represented by a mean droplet diameter (d50,3) and with a 
range variation of 20 µm. Furthermore, drop size distributions have been assigned by 
analyzing spray images via CNNs with a deviation of each class of 0.1 – 1.5 % compared 
to the measured value. 
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Introduction 
Medical spray pumps for pharmaceutical application are widely used as an alternate route of 
administration for systemic therapy in place of intravenous routes. Singe phase swirl nozzles 
(hollow cone ore full cone nozzles) are used in medical pumps and their drop size distribution, 
as well as the spray plume geometry, strongly depends on the nozzle geometry.  
Spray parameters are commonly the design target of medical spraying systems or must be 
controlled in the process. To control the spray parameters, reliable and preferably non-
invasive sensor systems are needed. Regarding the high production numbers of application 
apparatuses for nasal sprays, it is obvious that these sensor systems should provide highly 
time-resolved data to ensure quality by in-line measurements. 
Neural networks (NN) are a subcategory of machine learning. NNs consist of a stack of layers, 
each one having various numbers of neurons or nodes connected with the nodes in the 
previous and following layer, forming a so-called dense layer. These connections are 
weighted, and structural changes can be accomplished by adjusting those weights (Fig.1). 
Convolutional neuronal networks (CNNs), were successfully applied in fields like face 
detection, autonomous driving [1], and cancer detection [2]. These various applications of 
CNNs suggest the successful application of CNNs for characterizing sprays by image analysis 
[3]. This work seeks to implement an optical quality control system, capable of assuring that a 
spray matches some predefined requirements such as the mean droplet diameter d50,3 by 
image recognition. 
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Figure 1: Schematic structure of a Convolutional Neural Network 

Material and Methods 

A database for the CNN created by operating a commercial nasal spray pump continuously 
with water using a gear pump (Ismatec BVP-Z 183, Cole-Parmer GmbH, Germany). The drop 
size distributions of the sprays were measured via laser diffraction (Spraytec STP 5921, 
Malvern Instruments Ltd., Malvern, UK). For the creation of the image database, the volume 
flow of the liquid was adjusted in such a way that the generated spray matched the desired 
value for d50,3 for each category. The setup of the image database is represented in Table 1. 
 
 

 
 
 
 
 
 
 
 
 
 

500 images of the spray were taken for each category by a commercially available camera 
(Nikon Z6 24-70/4 S, Sendai Nikon Corporation, Natori, Japan)). The spray (Figure 2) was 
illuminated by two LED-spotlights (KL 1600 LED, Schott AG, Mainz, Germany) placed behind 
the aerosol relative to the camera position.  
 
 
 
 
 
 
 
 

                                              Figure 2. Image taken from the database for d50, 3 classifications. 

Category d50, 3 [µm] d50, 3, measured [µm] 

1 80 – 100 85.8 ± 1.2 

2 100 – 120 105.1 ± 1.8 

3 120 – 140 132.0 ± 6.3 

4 140 – 160 148.0 ± 6.3 

5 160 - 180 167.0 ± 5.1 

Tab.1: Parameters of database for d50, 3 categorization 
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The net for the categorization of the d50,3 consisted of ten layers in total, three convolutional 
and pooling layers respectively, one flattened layer to convert the two-dimensional images into 
a one-dimensional vector and two dense layers. The last layer, the output layer, consisted of 
five nodes, one for each category.  
For the categorization of the drop size distribution, the net architecture had to be adjusted in 
such a way that the output layer with five nodes was replaced with five parallel output layers 
with one node each. Due to the high CPU requirement, this architecture resulted in one single 
classifier consisting of a stack of three dense layers with five independent output layers, one 
for each drop class of the drop size distribution to be categorized. For this task, the images for 
determining the d50,3 were reused but labeled with the corresponding drop size distribution. 
This led to five drop size distributions with 500 image examples each. The measured drop size 
distribution was modified beforehand in such a way that the measured drop classes were 
assembled into five drop classes to reduce computing power. 
 
Results and Discussion  
 
In order to train the CNNs, the image database consisted of 2500 images in total. 500 images 
of each category (see Table 1) were in turn split up with 80 % in training data and 20 % in test 
data. Also, the training data were split up with 70 % data on which the weights were adjusted 
and the remaining data for validation of the success in the structural change (see Figure 3). 
 
 
 
 
 
 
 
 
 
 
Figure 3. Split up of the database for training, validation, and evaluation purposes. 
 
The adjustment of the weights is based on a loss function representing the deviation of the 
value given by the CNN on the real value (label) calculated by equation (1) with yi as the 
labeled value to be assigned, 𝑦𝑦�𝑖𝑖 representing the CNN value for class i out of n classes. 
 
 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = −�𝑦𝑦𝑖𝑖  𝑙𝑙𝑙𝑙(𝑦𝑦�𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

  (1) 
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The training history for the first of five training runs is represented in Figure 4. Black triangles 
and dots show the loss function and accuracy over the epochs during adjustment of the 
weighted connections. Grey triangles and dots represent loss function and accuracy during 
validation at the end of each epoch. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Training history for the first training run for d50,3 classification.  
 
 
Both training and validation loss show a descending trend with an increasing number of 
epochs reaching a value close to zero after the fourth epoch. The values fit quite well with the 
real values and in turn, the number of correctly categorized images increases with an 
increasing number of epochs, as can be seen from both the training and validation accuracy. 
The five different training runs leading to a different Model with the same architecture of the 
CNN.  Finally, each CNN trained by 2000 labeled images and the training success was 
evaluated by the certainty of the classification of the test data, which are not a part of the 
training data. The output of the CNN is a probability distribution over all categories for each 
image indicating the probability for the image to belong to one class or another. The trained 
CNNs classified all of the 500 images in the correct drop size classes presented in figure 1.  
 
To not only assign the images to a category of a median drop size with a certain probability 
but also categorize the values of each drop class of the distribution, the architecture of the 
network had to be adjusted to this task as described above. The measured drop size 
distribution was modified beforehand in such a way that the measured drop classes were 
assembled into five drop classes to reduce computing power. The aim was to give a probability 
value for each of these five classes by the CNN close to the real value for the corresponding 
drop class for the five drop size distributions.  
The results for two of the drop size distributions are shown in figure 5. The darker bars show 
the mean of the measured and modified distribution based on 20 measurements done by laser 
diffraction. The light gray bars show the mean value of the distributions done by the CNN for 
500 images for each drop size distribution. Error bars represent the 95 % confidence interval 
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for n = 20 and n = 500 for the measured and distributions given by the CNN, respectively. The 
low deviations between the values show that it is possible to categorize droplet size 
distributions via CNNs with a high confidence level for this particular task.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Two out of five investigated drop size distributions.  
 
Conclusions 
In the present work, CNNs were used to assign Spray images correctly to spray categories, 
each represented by a mean droplet diameter (d50,3) with a range variation of 20 µm. 
Moreover, CNNs were successfully trained for the categorization of a drop size distribution 
consisting of five drop classes. The deviation of the distribution as an output of the CNN from 
the measured distributions is in a range of 0.1 - 1.5% for each class. 
Subsequently, CNNs trained on different tasks can be combined to build up a robust sensor 
system e.g. for quality control purposes, giving a multi-parameter output to evaluate aerosol 
quality. 
    
 
 
Nomenclature 
d50,3   volume based median diameter [µm] 
y  labeled value [-] 
𝑦𝑦�  predicted value by the CNN [-] 
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