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Abstract 

The breakup of a liquid jet by a high-velocity gaseous crossflow has many applications in 

industry. Penetration height of the liquid jets in crossflows is considered as the main parameter 

of interest, and several empirical correlations for it have been developed by many researchers. 

However, recent studies show that significant differences between the predictions of the 

available correlations exist since the liquid jet in crossflow is a complex process and the 

penetration height depends on many parameters and variables. In the present study, it is 

shown that, although developing an accurate explicit equation or model is difficult, an Artificial 

Neural Network (ANN) is able to estimate the penetration height precisely. To train and test 

the network, input and output data have been obtained from experiments conducted in a wind 

tunnel. Overall, 48 different experiments have been performed, and 45 cases have been 

selected and partitioned into two parts: 80% for training and 20% for testing. Afterward, the 

remaining three cases have been used independently to test the network performance 

rigorously. In summary, it is revealed that ANNs enable the accurate prediction of penetration 

heights and have great potential to be used for more complicated operating conditions. 
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Introduction 

Liquid jet atomization in a subsonic gaseous crossflow (LJIC) is an important phenomenon 

happening in gas turbines, augmentors, and thermal sprays [1]–[3]. It is an extremely 

complicated process that has been widely investigated experimentally over the past years. 

The focus of most experimental works is on the penetration height of a liquid jet in a crossflow 

since it mainly controls the efficiency and performance in the mentioned systems [4]. Indeed, 

although several parameters like column and surface breakup, droplet size and velocity 

distributions, Sauter mean diameter (SMD), etc. have been used to study the LJIC 

comprehensively, the penetration height has been considered as one of the most important 

parameters since it indicates the location of droplets in the field and shows how well the liquid 

is mixed with the gas flow [4], [5]. It is worth mentioning that, in the application of thermal spray 

coatings, the location of droplets in the field is extremely important as low or high penetration 

height will significantly reduce the deposition rate [6]. 

So far, different experiments have been conducted under various operating conditions and 

several empirical correlations have been developed to estimate the liquid penetration height 

in crossflows [4]. In most of these empirical correlations, the penetration height is simply 

related to liquid-to-gas momentum flux ratio and normalized distance in the crossflow direction. 

For more complicated cases like liquid jets in high-pressure high-temperature crossflows, 

other nondimensional numbers such as gaseous Reynolds and Weber numbers are also 

included [4].  
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Recently, No [4] compared the predictions of about 40 different existing correlations and found 

clear discrepancies between the results. The main reason relies on the fact that the 

penetration height is a function of various parameters and variables like crossflow and liquid 

Reynolds numbers, Weber number, liquid-to-gas density ratio, temperature ratio (e.g. the 

dependency of surface tension, viscosity and density on temperature), nozzle geometry (e.g. 

round-edge or sharp-edge) and its location, the turbulent intensity of liquid jets and crossflows, 

orifice shape (circular, elliptical, rectangular orifices etc.), the presence of aerating gas within 

the liquid, and etc. [2], [7]–[10]. In addition, many researchers attribute the stated 

discrepancies to the measurement techniques incorporated to derive the correlations as well 

as the challenges in finding the boundaries of the sprays [4].  

In many applications, more parameters and variables are involved so that estimating the 

penetration height becomes significantly more challenging. For example, in suspension 

plasma spray, the liquids are typically non-Newtonian, and the surface tension and viscosity 

are time-dependent [11]. In addition, the crossflow characteristics like velocity, temperature, 

density, viscosity, etc. depend on both space and time [12]. Moreover, due to hydrodynamic 

instabilities, a pulsed suspension liquid jet usually interacts with the crossflow [3], [5]. 

The above discussion makes it clear that developing an accurate explicit equation or model, 

which considers the effects of several parameters for prediction of the penetration height is 

challenging. However, machine learning and deep learning approaches such as Artificial 

Neural Networks (ANNs), which have attracted much attention recently, have been 

successfully applied for various difficult multi-input multi-output nonlinear regression problems 

[13]. In the current study, the capability of ANNs for prediction of the liquid penetration height 

under complicated operating conditions is examined. First, to gather validated data, aerated 

elliptical and circular liquid jets in gaseous crossflows have been studied experimentally in a 

wind tunnel using a high-speed camera and shadowgraph technique. In these experiments, 

the nozzle ellipticity, orientation, gas-to-liquid mass flow rate ratio (GLR), and q (which is 

defined as the liquid-to-crossflow momentum flux ratio at GLR=0) have been changed and 

their effects on the penetration height have been obtained. Then, a neural network is 

developed to relate the penetration height to the mentioned nondimensional numbers as well 

as normalized distance in the jet direction. In the following sections, the experimental 

methodology, fundamentals of ANN, and the results are discussed. 

 

Experimental Methodology 

An open-loop subsonic wind tunnel is used here to perform the experiments. The test section, 

which is made of clear acrylic, has a cross section of 100×100 mm2 and a length of 750 mm. 

The PIV result has shown that the air velocity inside the test section is uniform (except for the 

thin boundary layers on the walls) and can reach 45 m/s [14]. In the present study, the air 

velocity inside the test section is measured by a Pitot tube. 

The liquid injection system includes a pressure tank for distilled water, an effervescent 

atomizer, air supply, two regulators (one for controlling the water pressure inside the tank and 

another for supplying the effervescent nozzle with the aerating gas), and two rotameters to 

control water and aeration gas flowrates. A schematic of the test setup is shown in Figure 1. 

The atomizer is designed based on the outside-in gas injection concept [15]. In this respect, 

the water flows inside a perforated tube and the air is injected into it through 24 holes. The 

diameter of each hole is 1 mm. Furthermore, to avoid any undesirable disturbances, the nozzle 

exit is set flush with the inner surface of the test section. In addition, two orifices are designed 

as the bottom part of the atomizer: 1. a circular orifice with a diameter of 0.94 mm and 2. an 

elliptical orifice with the major and minor axes of 2.03 and 0.67 mm, respectively. As discussed 
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in our previous paper [14], for elliptical jets in crossflows, the aspect ratio (Ar) is typically 

defined as the ratio of the axis perpendicular to the crossflow direction, to the axis parallel to 

the crossflow direction (see Figure 2). In this case, both nozzles’ shapes and orientations can 

be taken into account. In this study, the elliptical orifice has aspect ratios of 3 and 0.3, and the 

circular orifice has an aspect ratio of 1. 

 

 

Figure 1. Schematic of the wind tunnel, spray injection, and high-speed imaging systems. 

 

 

Figure 2. Schematic of aspect ratios of the elliptical and circular orifices. 

 

In addition to Ar, other nondimensional numbers such as q and GLR have significant influences 

on the penetration height. To alter q, the wind tunnel velocity or the liquid flow rate is changed. 

However, GLR is varied by changing the aerating gas flow rate. In this study, q and GLR are 

between 2-23 and 0-7%, respectively, and, overall, 48 different tests have been conducted. 

A high-speed camera (Photron SA1.1) with a Nikon lens (AF Micro Nikkor 105mm 1:2.8) has 

been used to record the trajectory and breakup of liquid jets in the crossflow. The camera 

resolution, shutter speed, and framerates have been set to 1024×1024 pixels, 1 μs, and 5000 



 
ICLASS 2021, 15th Triennial International Conference on Liquid Atomization and Spray Systems, Edinburgh, UK, 29 Aug. - 2 Sept. 2021 

frames per second, respectively. Furthermore, an LED (150 W, GS Vitec Multiled QT) has 

been installed behind the test section as the backlight source. 

After running the tests and saving the side-view images of the sprays with a personal computer 

connected to the camera, the ImageJ software (which is an open source image processing 

program) is used to detect the penetration height of the liquid jets and to gather the input and 

output datasets. A procedure that is very common in the field of LJIC is applied [16], [17]. That 

is, for each test, at first, the 5000 raw images are superimposed to obtain an averaged image. 

Then, the background (i.e. the image taken before injecting the liquid) is subtracted from that 

averaged image. Afterward, a threshold of 90% is applied to the resultant image to reduce the 

noise. Finally, a series of points is placed manually along the windward trajectory to obtain the 

penetration height. More information about this approach can be found in [16], [17]. In Figure 

3, an image taken by the high speed camera as well as the curve of penetration height are 

shown for one case as an example. 

 

 

 

 

 

 

 

 

 

 

Figure 3. A sample of shadowgraph image and the obtained penetration height (GLR=7%, q=4, and Ar=0.3). 

 

Artificial Neural Network (ANN) 

As represented in Figure 4, every ANN has at least three sections: the input, hidden layer(s), 

and output. Each section is usually referred to as a layer. In general, each network has one 

input, one output and can have multiple hidden layers depending on the desired accuracy and 

available computational power [13], [18]. In each layer, several nodes, or neurons (shown as 

circles in Figure 4) are included. The number of nodes in the input and output layers is equal 

to the number of input and output variables defined by the user. However, the number of nodes 

in the hidden layers is flexible. As shown, any node in the input layer is linked to every single 

node in the first hidden layer, and similarly, any node in the first hidden layer is connected to 

every single node in the second hidden layer, and so on, until the output layer is reached. A 

weight is associated with each connection between the two nodes. For a given node, the 

output is calculated by applying an activation function (such as hyperbolic tangent, identity, 

and rectified linear unit (relu)) to the weighted sum of inputs, and a bias. At first, these weights 

and biases are random, however, they are tuned by algorithms such as gradient descent and 

backpropagation [13]. For more information about ANN, weights and biases, optimization 

algorithms, etc. the interested readers are referred to several books and articles published in 

this area such as [13]. 

In the current work, the concept of supervised learning is applied. In this regard, 45 

experimental tests are chosen and split into two parts: 80% for training and 20% for testing. 
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The network can see and learn from the training data and the weights and biases can be 

adjusted based on the error. However, the testing data, which includes unseen data (not used 

for training), is used to analyze the network performance and generalization. In order to 

perform further tests, the remaining three cases are fed independently to the network and the 

outputs are compared with the experimental results. The details of these three cases are 

shown in Table 1. 

 

 

Figure 4. A schematic representation of an artificial neural network [18]. 

 
Table 1 - The three cases used for testing the network 

 q Ar GLR 

Set 1 4 0.3 7 

Set 2 23 3 0 

Set 3 8 1 4.5 

 

In the present study, the input variables are y/d, q, GLR, and Ar, while the output parameter is 

x/d. In the field of LJIC, x and y are typically in the crossflow and liquid jet directions, 

respectively (see Figure 3). These parameters are normalized by the equivalent diameter of 

the orifices, d. For the circular and the elliptical orifices, the equivalent diameter is 0.94 and 

1.16 mm, respectively. We have chosen the parameter y/d as the input since it is always 

nonnegative and results in better performance and lower errors. It should be pointed out that, 

x/d can be negative depending on q, GLR, and Ar (see the result section).  

Standardization is used in the present study to rescale the datasets so that they have a mean 

value of 0 and a standard deviation of 1. This technique is generally advantageous when the 

data has varying scales. In addition, grid searching is applied for optimizing hyperparameters 

and selecting the network with the best performance. The network performance was evaluated 

using mean squared error (MSE), R-squared value, and explained variance score. A full list of 

the hyperparameters as well as their values tested in our grid search is shown in Table 2. 

Here, the learning rate determines at which pace the weights and biases get updated. It can 

be fixed or adaptively varied during training to improve the computational time and numerical 

convergence. An epoch refers to one iteration where the model sees the entire training dataset 

to update the weights and biases. Moreover, the regularization parameter is applied to ensure 

the model is not overfitting the training dataset [13]. 
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Table 2 - Hyperparameters and their tested values in the grid search 

No. of hidden layers 1, 2, 3 

No. of nodes in each hidden layer 10, 20, 30, …, 180, 190, 200 

Learning rate constant and adaptive 

Initial learning rate 0.0005, 0.0008, 0.001, 0.003, 0.005, 0.008, 0.01, 

0.03, 0.05, 0.08, 0.1, 0.5 

No. of epochs 50, 75, 100, 125, 150, 175, 200, 300, 500 

Activation functions identity, tanh, relu 

Solvers stochastic gradient descent (sgd), adam 

Alpha (L2 regularization 

parameter) 

0.0001, 0.0005, 0.0008, 0.001, 0.005, 0.008, 0.01, 

0.05, 0.08, 0.1, 0.5 

 

Results 

In Figure 5, some plots are provided to reveal the dependency of liquid penetration height on 

GLR, q, and Ar. As can be seen, by increasing GLR and q, the penetration height increases. 

However, when q and GLR are fixed, the penetration height of the circular nozzle (Ar=1) is the 

highest. In addition, as mentioned, for some cases, x/d can be negative values. It should be 

noted that not all of the experimental data is presented here because discussing the results 

would be unnecessarily lengthy and beyond the scope of the current paper. In subsequent 

work, all the experimental results will be presented and discussed.  

 

Figure 5. Liquid penetration heights obtained from the experiments. 

 

The network with the best performance had three layers including 140 nodes in the first layer, 

130 nodes in the second layer, and 130 nodes in the third layer. The solver, activation function, 

and learning rate were stochastic gradient descent, rectified linear unit (relu), and adaptive, 

respectively. The number of iterations (epochs) was 100, and alpha and the initial learning 

rate were both 0.008. In Figure 6, the predicted values for the testing dataset (i.e. the 20% 
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test data stated above) are compared with the actual values obtained from the experiments. 

Here, the MSE, R-squared value, explained variance score, and the maximum absolute error 

are 0.146, 0.997, 0.997, and 3.186, respectively. 

 

 

Figure 6. Predicted values vs. actual values (from the experiment) for the testing dataset. 

 

 

Figure 7. Network’s predictions for sets 1-3 versus the experimental data. 

 
Table 3 - MSE, R-squared value, and explained variance score for sets 1-3 

 MSE R-squared Explained variance score 

Set 1 0.095 0.994 0.994 

Set 2 4.386 0.94 0.969 

Set 3 0.056 0.977 0.98 
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In Figure 7, the predicted values for test cases, referred to as sets 1-3 (see Table 1) are 

compared with their corresponding experimental data. Moreover, Table 3 shows the MSE, R-

squared value as well as explained variance score for these cases. As can be seen, the 

network is able to predict the trends and the values of liquid penetration heights accurately. 

 

Conclusions 
In the present study, an Artificial Neural Network (ANN) has been used to predict the 

penetration height of a liquid jet in a gaseous crossflow. Experimental studies have been 

performed in a wind tunnel to gather the input/output data to train and test the network. In 

these experiments, elliptical and circular nozzles have been utilized and a wide range of gas-

to-liquid mass flow rate ratio and liquid-to-gas momentum flux ratio has been considered. After 

training the network, different tests have been done to analyze the network performance. 

Overall, the prediction heights have been accurately estimated by the network, which 

demonstrates the great potential of ANNs to be used for more complex conditions. 
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