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Abstract
A two-phase, low-Mach-number compressible flow solver is proposed. Density variations are
linked to changes in composition and temperature rather than pressure. The interface is tracked
using a split Volume-of-Fluid method generalized for the case where the liquid velocity is not
divergence-free and both phases exchange mass across the interface. A sharp interface is
maintained by using a Piecewise Linear Interface Construction (PLIC). At supercritical pressures,
the dissolution of lighter gas species into the liquid phase is enhanced and vaporization or
condensation can happen simultaneously in different locations along the interface. Mass is
conserved to machine-error precision in the limit of incompressible liquid.
The numerical cost of solving two-phase supercritical flows increases substantially because: a)
a thermodynamic model is used to determine fluid properties; b) local phase equilibrium and
jump conditions are solved together at each interface cell; and c) phase-wise values for certain
variables (e.g., velocity) are obtained via extrapolation techniques. To alleviate the increase
in numerical cost, the pressure Poisson equation (PPE) is split into a constant coefficient part
(implicit) and a variable coefficient part (explicit) and solved using a Fast Fourier Transform
(FFT) method. Various tests at high pressures are performed to show the accuracy and viability
of the present approach: one-dimensional unsteady flow, two-dimensional capillary wave and
planar jet.
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Introduction
Combustion chambers of many engineering applications operate at elevated pressures. High-
pressure chambers improve combustion efficiency and energy conversion per unit mass of fuel.
Operating pressures between 25-40 bar can be found in gas turbines, whereas rocket engines
can reach 70 to 200 bar. In these applications, liquid fuels based on hydrocarbons are used
whose critical pressures are in the range of 20 bar (e.g., Jet-A or RP-1). Understanding how
these fuels atomize, vaporize and mix with the oxidizer (e.g., air) is crucial for a proper design of
the combustion chamber. At low pressures, the liquid injection problem can be well-analyzed,
both experimentally and numerically, due to the simpler thermodynamic environment. However,
this is not the case at trans- or supercritical pressures for the liquid fuel, where a thermodynamic
transition occurs and the liquid and gas cannot be easily identified [1].
This behavior has often been described as a very fast transition of the liquid phase to a
supercritical gas-like state. But evidence of a two-phase behavior exists, whereby the liquid-
gas interface must be in local thermodynamic equilibrium (LTE) [2, 3, 4]. The failure to properly
identify the two-phase problem in experimental setups is consistent with a fast atomization
caused by the extreme thermodynamic environment. Enhanced mixing causes both phases
to look more alike near the interface, with reduced surface tension forces and gas-like liquid
viscosities [5]. Moreover, fluid properties vary strongly across mixing regions. Thus, traditional
imaging-based experimental techniques fail in capturing a liquid core possibly surrounded by a
cloud of very small droplets and submerged in a variable-density layer.
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The modeling of supercritical two-phase flows is a challenge to the scientific community due
to its intrinsic complexity: the non-ideal fluid behavior must be captured, the discontinuous
liquid-gas interface is at LTE while both phases exchange heat and mass, the interface must be
accurately tracked and a degree of computational efficiency is needed to mitigate the additional
computational costs related to the modeling of this thermodynamic environment.
Volume-of-Fluid (VOF) methods are good starting points to develop numerical tools to analyze
supercritical liquid injection. A sharp interface is maintained, both during the interface tracking
and when solving the governing equations. Additionally, VOF methods handle vaporization or
condensation naturally. In this work, the mass-conserving, incompressible VOF method from
Baraldi et al. [6] is extended to low-Mach-number compressible two-phase flows coupled with
a real-gas thermodynamic model. Moreover, a pressure-correction method based on a split
pressure-gradient approach is used, which converts the PPE to a constant-coefficient Poisson
equation that can be solved using a computationally-efficient FFT algorithm [7, 8]. The effect
of pressure variations on the density is neglected. Thus, density changes are only linked to
variations in composition and temperature.
The authors acknowledge the existence of other methods to solve compressible two-phase
flows. However, they often present costly and complex interface tracking algorithms, which is a
critical issue when simulating supercritical two-phase flows.

Governing equations and thermodynamic model
The low-Mach-number governing equations for supercritical two-phase flows are the continuity
and momentum equations, Eq. (1), and the species continuity and energy equations, Eq. (2),
expressed in non-conservative form. For simplicity, the real fluid is assumed to be a Newtonian
fluid under Stokes’ hypothesis. This work considers binary configurations. Thus, only the
conservation equation for the mass fraction of a single species (i.e., Y1) is needed. Mass
diffusion is modeled with a high-pressure, mass-based Fickian diffusion coefficient, Dm, and
the energy equation is expressed in terms of an enthalpy transport equation.
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A thermodynamic model based on a volume-corrected Soave-Redlich-Kwong equation of state
(SRK EoS) [9] is implemented. The SRK EoS is able to represent non-ideal fluid states for both
phases. Information about how to obtain thermodynamic properties from the SRK EoS, as well
as high-pressure correlations to obtain transport properties, is found in Davis et al. [3].
Jump conditions for each governing equation are defined at the interface and are coupled to
LTE [10], which is expressed in terms of an equality in fugacity of each species on both sides
of the interface. For non-confined, low-Mach-number flows, the thermodynamic pressure is
assumed to remain uniform and equal to the ambient pressure. Therefore, fluid properties and
transport properties are decoupled from the dynamic pressure responsible for fluid motion.
In this work, the interface is treated as a discontinuity with negligible thickness. Temperature is
assumed continuous, although temperature gradients differ on both sides of the interface. The
assumptions presented here in modeling the interface are plausible as long as the interface
temperature is far away from the mixture critical temperature [11, 12] and the interface thermal
resistivity is negligible [13]. The solution of the matching system of equations given by jump
conditions and LTE provides the interface temperature, composition and net fluxes per unit area
across the interface for mass, momentum, energy and species mass.
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Interface tracking
The incompressible and mass-conserving VOF method from Baraldi et al. [6] is extended to
address the advection of compressible liquids with phase change. The advection equation for
the liquid indicator function, χ where χ = 1 in the liquid and χ = 0 in the gas, is integrated
in space over the cell volume and in time with a first-order forward Euler scheme to obtain an
equation for the volume fraction, C (see Eq. (3)).

∂χ

∂t
+∇ · (χ~ul) = χ∇ · ~ul −

ṁ

ρl
→ Cn+1 = Cn −

Nfaces∑
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Fi + C̃(∇ · ~ul)∆t−
ṁ

ρl
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The liquid phase is advected by a phase-wise liquid velocity, ~ul. Because of the different
fluid compressibilities and the velocity jump across the interface caused by mass exchange,
a representative velocity of the liquid phase must be used. ρl is the interface liquid density and
ṁ is the mass flux per unit volume added because of condensation (ṁ < 0) or subtracted when
the liquid vaporizes (ṁ > 0). It relates to the mass flux per unit interface area, ṁ′, as ṁ = ṁ′δΓ,

where δΓ is the interfacial surface area density. The term
∑Nfaces

i=1
Fi accounts for the sum of the

signed geometrical fluxes of C. Lastly, C̃ is the volume fraction of the cell and only the choice
C̃ = Cn+1 provides a consistent advection. In summary, Eq. (3) represents the change in C at
a given cell caused by inflow and outflow of liquid volume fluxes, local volume change of the
liquid phase and the volume of liquid added/subtracted due to phase change.
Eq. (3) is solved with a modified Eulerian Implicit (EI), Eulerian Algebraic (EA) and Lagrangian
Explicit (LE) split advection algorithm [10]. The first step accounts for mass exchange, followed
by the three EI-EA-LE steps and a final correction step to match the form of Eq. (3). The EA
step is only needed for three-dimensional flows. The interface is geometrically defined between
each step using the PLIC by Youngs [14]. The interface normal unit vector is evaluated using
the Mixed-Youngs-Centered method [15] while curvature is computed using an improved Height
Function (HF) method [16].
The advection algorithm described here relies on a volume-preserving scheme. Therefore,
mass is not conserved to machine error in compressible liquids due to the finite resolution of
the liquid density field. However, mesh refinement, both spatial and temporal, improves the
mass-conserving properties of the method. In the limit of incompressible liquid without phase
change, the present algorithm recovers the approach from [6].

Numerical methods
The main algorithm to solve each time step is presented here in order. Starting from the initial
conditions or the previous time step solution, the first step is to advect the interface using the
compressible VOF method and evaluate its geometry.
The second step consists in solving the equations for the species mass fraction and mixture
enthalpy, Eq. (2). A finite-difference method is used to solve the non-conservative form, where
the location of the interface and its solution are embedded in the discretization [10]. Each phase
is solved separately. Thus, phase-wise velocities and phase-wise fluid properties are used.
The equations are integrated in time with an explicit first-order step and the convective term is
discretized using an adaptive first-/second-order upwinding scheme, which provides numerical
stability and boundedness (i.e., Y1 ≤ 1). The diffusive term is discretized using second-order
central differences. However, the inclusion of the interface in the numerical stencil may cause
the spatial accuracy to drop between first- and second-order near the interface.
After solving Eq. (2), the third step updates the fluid properties everywhere using the SRK EoS
thermodynamic model. Moreover, the jump conditions and LTE are solved at each interface cell.
To do so, the normal-probe technique is implemented. A probe perpendicular to the interface
is extended into each phase and the values of Y1 and h are interpolated at different locations
on the probe. Then, their gradients perpendicular to the interface can be estimated, which are
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needed to determine mass and energy fluxes into the interface. After this step, a full definition
of the interface is available (i.e., mixture properties on both sides and geometry).
The fourth step evaluates the fluid compressibilities in both phases and their extrapolation
across the interface, as well as the extrapolation of the corresponding phase-wise velocities.
The phase-wise values of these terms are only required in a narrow band of cells around the
interface for the advection of C and for the discretization of the governing equations. Fluid
compressibilities (i.e., ∇ · ~u = −(1/ρ)(Dρ/Dt)) are evaluated in non-interface cells using the
thermodynamic model as
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where the various thermodynamic derivatives are evaluated at constant pressure at tn+1 as
shown in [3] and (DY1/Dt)

n+1 and (Dh/Dt)n+1 are obtained from the numerical discretization
of Eq. (2). v̄ is the mixture molar volume and W1 and W2 are the molecular weights of each
species. Then, the extrapolation techniques by Aslam [17] are adapted to VOF methods and
used to extrapolate ∇ · ~un+1

l and ∇ · ~un+1
g from each respective phase across the interface.

A linear extrapolation is preferred, however a constant extrapolation might be required for
numerical stability. Once the phase-wise velocity divergences have been extrapolated, the
phase-wise velocities are obtained by extending the extrapolation equation from Dodd et al. [8]
to compressible flows. Eq. (5) represents the extrapolation of the liquid phase-wise velocity, ~ul,
solved directly at steady-state to match the previously extrapolated liquid velocity divergence,
defined as g. Here, τ acts as a pseudotime, which does not have units of time. ~ug is obtained
in a similar manner.

∂~ul
∂τ

+∇(∇ · ~ul) = ∇g → ∇(∇ · ~ul) = ∇g (5)

Finally, the fifth step solves the momentum equation subject to the continuity constraint. Contrary
to the approach used in the resolution of Eq. (2), here Eq. (1) is solved in conservative form
using the finite-volume method. A one-fluid method is used where fluid properties are volume-
averaged at the interface cells and the jump conditions are modeled through localized source
terms in the momentum and continuity equations. A sharp interface is maintained since both
the volume averaging and the activation of interfacial source terms occurs within a region of
O(∆x). The one-fluid momentum equation reads
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where the momentum jump due to surface tension forces is included as a source term using
the Continuum Surface Force approach applied to variable surface-tension fluids [18].
The momentum equation is solved explicitly using a first-order time integration and a predictor-
projection method. The convective term is discretized using the SMART algorithm and the
one-fluid velocity (i.e., the velocity directly provided by the solution of the momentum equation).
Near the interface, a hybrid method is used that combines second-order central differences with
a first-order upwind scheme. On the other hand, the viscous term is discretized with second-
order central differences using the phase-wise velocity to avoid artificial pressure spikes [8].
A constant-coefficient PPE is built using the split pressure-gradient method for two-phase
flows [7, 8] to obtain the pressure field and the one-fluid velocity that satisfies the continuity
equation as
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where ~up is the velocity obtained in the predictor step, ρ0 is the smallest fluid density (i.e., pure
gas density) and p̂ = 2pn − pn−1 is an explicit linear extrapolation in time of the pressure field.
Following Duret et al. [19], the one-fluid continuity constraint is estimated as

∇ · ~un+1 = −(1− C)
1

ρg

Dρg
Dt
− C 1

ρl

Dρl
Dt

+ ṁ
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with all terms evaluated at time tn+1. Because Eq. (7) has constant coefficients, it can be
solved using a FFT method [7]. This approach saves computational time usually spent in
solving the PPE. Therefore, computational resources can be redirected towards solving the
expensive algorithm steps added in supercritical two-phase problems: the use of a real-gas
thermodynamic model, the solution of a system of equations at each interface cell to determine
the interface properties and the extrapolation of phase-wise velocity divergences and their
corresponding velocities. Further details on this numerical approach are available in [10].

Results and discussion
The supercritical two-phase solver proposed here is validated against different test cases. Due
to the intrinsic complexity of the problem, no analytical solutions are available and the focus
is on the numerical behavior and the qualitative correctness of the observed physics. A more
detailed analysis is presented in [10]. In all test cases, the liquid phase is initially composed of
n-decane at 450 K and the gas phase is composed of oxygen at 550 K.
A one-dimensional configuration where an unperturbed liquid pool is sitting on a wall is analyzed.
The qualitative behavior is in good agreement with [2], yet here the thermodynamic model has
been improved, the interface is allowed to move and the momentum equation is solved. As
the sharp initial condition relaxes, mass and heat diffuse in both phases. Higher pressures
enhance the dissolution of oxygen in the liquid phase and cause stronger variations in fluid
properties across the mixing region.
The direction of the interface displacement also matches the displacement predicted in [2]. At
10 bar, vaporization reduces the liquid volume (i.e., the interface recedes). Even though at 50
bar the interface is vaporizing, there is enough dissolution of oxygen into the liquid as to locally
expand the liquid volume. Thus, the liquid volume increases. At 100 and 150 bar, both local
volume expansion and condensation contribute to the increase in liquid volume.

(a) (b)

Figure 1. Two-dimensional capillary wave: Mesh convergence of the interface solution at t = 19 µs for the 150-bar
case. (a) temperature; (b) net mass flux.

A two-dimensional capillary wave is also analyzed. Both phases are initially at rest and with the
same mixture composition and temperature as in the one-dimensional test. Here, the interface
is initially perturbed with a sinusoidal wave of 30 µm wavelength and 1 µm amplitude. The
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interface amplitude will relax in time and the overall solution will tend to a one-dimensional
behavior similar to the previous test. However, this problem lets us analyze mesh convergence
of the interface solution and mass conservation, as well as show some of the features of
supercritical two-phase flows, for deformed interfaces.
Figure 1 shows the mesh convergence of the interface temperature and mass flux at t = 19 µs
for the 150-bar case. Four different uniform meshes are analyzed: M1 (0.3 µm), M2 (0.2 µm),
M3 (0.1 µm) and M4 (0.05 µm). The mixing around the interface can be captured better for
finer meshes. The concentration and enthalpy gradients obtained with normal-probe technique
are more accurate and a smoother sinusoidal distribution of interface properties is obtained
(Figure 1a). As in the one-dimensional case, net condensation occurs along the interface.
Similar to the oscillations in curvature caused by the HF method, the mass flux solution is
very sensitive to the non-smoothness of the interface and mixing region around it. Thus,
some numerical oscillations are observed (Figure 1b). Overall, first-order or lower spatial
convergence rates are observed for the interface properties. Even though one-dimensional
interfaces show a better behavior, it is not surprising that the complexity of the model causes
two- and three-dimensional interfaces to show limited spatial convergence. This issue has
been reported in other works as well [20]. Nevertheless, the normalized errors between two
consecutive meshes are of the order of 1% or less. On the other hand, the interface dynamics
present a better spatial convergence and are little affected by the small variations in interface
properties. Figure 2a shows the temporal relaxation of the interface amplitude at the initial wave
crest location (x = 7.5 µm) at 150 bar obtained with the four different meshes.
Mass errors are evaluated by comparing the normalized difference between the liquid mass
at a given time and the initial liquid mass with the accumulated mass exchanged across the
interface. Both approaches should be equivalent, but the resolution of the density field and the
accuracy to which the mass flux across the interface is obtained cause some differences. Mesh
refinement improves mass conservation, with the error dropping to 1% for mesh M4.

(a) (b)

Figure 2. Two-dimensional capillary wave: Interface amplitude relaxation vs. time at the initial wave crest location
of x = 7.5 µm. (a) mesh convergence at 150 bar; (b) various pressures with M3.

Some pressure effects on the interface dynamics are seen in Figure 2b. The relaxation of
the interface amplitude at x = 7.5 µm is shown for different pressures. A drift towards higher y
values caused by enhanced liquid volume expansion and condensation is observed as pressure
increases. A similar perturbation damping occurs for all pressures; however the reduction in
surface tension forces as pressure increases causes the oscillation frequency to drop.
The last test demonstrates the ability of the numerical model to capture the interface deformation
seen in liquid injection, as well as the relevant physics at supercritical pressures. A symmetric
two-dimensional temporal planar jet with a half thickness of 10 µm is initially perturbed with a
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sinusoidal wave of 30 µm wavelength and 0.5 µm amplitude. The ambient pressure is 150 bar
and a thin streamwise velocity distribution is imposed around the interface, varying from 0 in
the liquid phase to 30 m/s in the gas phase following a hyperbolic tangent profile. Periodicity is
imposed in the streamwise direction and outflow boundary conditions are imposed in the gas
phase top boundary.

(a) T at t = 1 µs (b) Y1 in the gas phase at t = 1 µs

(c) T at t = 2 µs (d) Y1 in the gas phase at t = 2 µs

(e) T at t = 3 µs (f) Y1 in the gas phase at t = 3 µs

(g) T at t = 4 µs (h) Y1 in the gas phase at t = 4 µs

Figure 3. Two-dimensional planar jet: Temperature distribution and Y1 distribution in the gas phase at 150 bar with
M4. The interface location is highlighted with a solid black curve.

Figure 3 shows the distributions of temperature and oxygen mass fraction, Y1, as well as the
interface deformation, at different times. The characteristics of the mixing process can be seen
where the swirling motion captures regions of hotter gas and higher oxygen concentration into
the liquid structure. Moreover, the fast growth of the surface instability at high pressures is
apparent and similar to that reported in [5], which can be linked to a faster atomization.
Other interesting results not shown here related to mixing in the liquid phase. The elongated
liquid region presents lower densities and gas-like viscosities, which contribute to a faster
deformation under the effects of the shear forces caused by the faster gas.
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Conclusions
The viability and accuracy of the numerical model presented in this work to address two-phase
supercritical flows has been demonstrated. The low-Mach-number governing equations for
two-phase flows are coupled to a non-ideal thermodynamic model and a VOF method for
compressible liquids with phase change. Extra computational costs are added to the algorithm
because of the extrapolations of phase-wise values or the solution of the jump conditions and
LTE at every interface cell. To mitigate them, a constant-coefficient PPE is used, which can be
solved with a FFT method. Future work includes three-dimensional results of planar jets, the
analysis of the role of vortex dynamics in the deformation of the liquid and a thermodynamic
characterization of the interface (e.g., identify regions of condensation/vaporization).

Acknowledgments
The authors are grateful for the contributions from Prof. Antonino Ferrante and his group for
sharing with us incompressible VOF subroutines. The authors are also grateful for the support
of the NSF grant with Award Number 1803833 and Dr. Ron Joslin as Scientific Officer.

References

[1] Mayer, W.O.H., Schik, A.H.A., Vielle, B., Chauveau, C., Gökalp, I., Talley, D.G., Woodward,
R.D., 1998, Journal of Propulsion and Power, 14 (5), pp. 835-842.

[2] Poblador-Ibanez, J., Sirignano, W.A., 2018, International Journal of Heat and Mass
Transfer, 126, pp. 457-473.

[3] Davis, B.W., Poblador-Ibanez, J., Sirignano, W.A., 2021, International Journal of Heat and
Mass Transfer, 167, pp. 120687.

[4] Poblador-Ibanez, J., Davis, B.W., Sirignano, W.A., 2021, International Journal of
Multiphase Flow, 135, pp. 103465.

[5] Poblador-Ibanez, J., Sirignano, W.A., May 2019, ILASS-Americas 30th Annual Conference
on Liquid Atomization and Spray Systems.

[6] Baraldi, A., Dodd, M., Ferrante, A., 2014, Computers & Fluids, 96, pp. 322-337.
[7] Dodd, M., Ferrante, A., 2014, Journal of Computational Physics, 273, pp. 416-434.
[8] Dodd, M., Trefftz-Posada, P., Ferrante, A., 2021, In Preparation
[9] Lin, H., Duan, Y.-Y., Zhang, T., Huang, Z.-M., 2006, Industrial & Engineering Chemistry

Research, 45 (5), pp. 1829-1839.
[10] Poblador-Ibanez, J., Sirignano, W.A., 2021, Under Review. Available at arXiv.org eprint:

2103.01874
[11] Dahms, R.N., Oefelein, J.C., 2013, Physics of Fluids, 25 (9), pp. 092103.
[12] Dahms, R.N., Oefelein, J.C., 2015, Proceedings of the Combustion Institute, 35 (2), pp.

1587-1594.
[13] Stierle, R., Waibel, C., Gross, J.,Steinhausen, C., Weigand, B., Lamanna, G., 2020,

International Journal of Heat and Mass Transfer, 151, pp. 119450.
[14] Youngs, D.L., 1982, Numerical Methods for Fluid Dynamics, 1, pp. 41-51.
[15] Aulisa, E., Manservisi, S., Scardovelli, R., Zaleski S., 2007, Journal of Computational

Physics, 225 (2), pp. 2301-2319.
[16] López, J., Zanzi, C., Gómez, P., Zamora, R., Faura, F., Hernández, J., 2009, Computer

Methods in Applied Mechanics and Engineering, 198 (33-36), pp. 2555-2564.
[17] Aslam, T.D., 2004, Journal of Computational Physics, 193 (1), pp. 349-355.
[18] Seric, I., Afkhami, S., Kondic, L., 2018, Journal of Computational Physics, 352, pp. 615-

636.
[19] Duret, B., Canu, R., Reveillon, J., Demoulin, F., 2018, International Journal of Multiphase

Flow, 108, pp. 42-50.
[20] Palmore Jr, J., Desjardins, O., 2019, Journal of Computational Physics, 399, pp. 108954.


	Abstract
	Keywords
	Introduction
	Governing equations and thermodynamic model
	Interface tracking
	Numerical methods
	Results and discussion
	Conclusions
	Acknowledgments
	References

