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Abstract
In this work, various simulations of boiling on unstructured grids are performed. The methodol-
ogy introduced in [14] is employed. We show that the use of the conservative level-set instead
of the standard signed distance level-set increases the method accuracy. In particular, the bub-
ble rise and growth is simulated with dynamic mesh adaptation to keep high resolution around
the interface with moderate number of cells. Finally, film boiling with bubble formation is simu-
lated in 2D. This case marks a milestone towards the simulation of nucleate boiling, where in
addition a liquid-vapor-solid contact has to be simulated. Furthermore, simulations of contact
lines without phase change are performed to assess a contact angle imposition method rep-
resenting the surface wettability. The methodology is validated on a canonical test case and
reproduces accurately the drop impact on a superhydrophobic cone. On-going work is then
devoted to coupled numerical methods for boiling with these new developments.
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Introduction
Two-phase flows are found in various natural phenomena and industrial applications. More
specifically, boiling is widely used for heat exchanges in nuclear plants or in refrigerating ma-
chines. Most of the applications are interested in nucleate boiling, a regime for which vapor
bubbles are nucleated on the heated surface and detach afterwards due to buoyancy effect.
Nucleate boiling implies several complex physical phenomena. First, heat conduction induces
phase change at the liquid-vapor interface, creating physical discontinuities. Second, three
phases coexist at the intersection between the liquid-vapor interface and the solid surface. This
closed curve named contact line is characterized by a contact angle, representing the surface
wettability. Numerical simulation of nucleate boiling requires to compute accurately the amount
of liquid transformed into vapor and must take into account the surface wettability effects which
can be determining on the global heat transfer. Based on the methodology devoted to simulate
phase change on unstructured meshes described in [14], this article presents several cases of
boiling in the aim of simulating nucleate boiling. In addition, simulations of contact lines without
phase change are performed to show the solver capacity to take surface wettability effects into
account, even on complex geometries.

Governing equations and interface conditions
The flow is described by the incompressible Navier-Stokes equations. For any fieldA, we define
the interface jump operator [A]Γ = Al,Γ−Ag,Γ, where the subscript l stands for the liquid phase
and g for the gaseous phase. The mass conservation reads in each phase ∇ · u = 0, where
u is the fluid velocity. If phase change occurs, the velocity field is discontinuous at interface Γ
and must satisfy the condition

[u]Γ = ṁ

[
1

ρ

]
Γ

n, (1)
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where ṁ is the local mass transfer rate through the interface, ρ the density and n the interface
normal vector. Assuming uniform density in each phase, the momentum conservation reads

∂u

∂t
+∇ · (u⊗ u) = −∇P

ρ
+

1

ρ
∇ ·
(
µ
(
∇u + (∇u)T

))
+ g, (2)

where P is the pressure, g the gravitational acceleration and µ the dynamic viscosity of the
considered phase. The pressure discontinuity at the interface is defined by

[P ]Γ = σκ+
[
µn ·

(
∇u + (∇u)T

)
n
]

Γ
− ṁ2

[
1

ρ

]
Γ

, (3)

where σ is the surface tension coefficient and κ the local interface curvature. The pressure is
thus discontinuous even without phase change, contrary to the velocity.
In each phase, energy conservation is expressed with the temperature and reads

∂T

∂t
+ u · ∇T =

1

ρcp
∇ · (λ∇T ) , (4)

where T is the temperature, cp is the heat capacity at constant pressure and λ is the thermal
conductivity of the considered phase. When phase change is considered, the heat flux at
interface is not entirely transmitted from one phase to the other and one has the following
power balance [−λ∇T · n]Γ = ṁLv, where Lv is the latent heat of vaporization. This is the
definition of the local mass transfer rate ṁ. Moreover, since we focus on boiling problems, the
interface temperature is set to the saturation temperature, i.e. TΓ = Tsat. The Navier-Stokes
equation and the heat equation are coupled through the jump conditions Eq. (1) and Eq. (3).

Liquid-gas interface capturing method: conservative level-set
The liquid-gas interface is captured by an improved level-set method, the conservative level-
set [12]. The ψ = 0.5 isocontour of the function ψ = 0.5 (tanh (φ/(2ε)) + 1) represents the
interface, where φ = ±|x − xΓ| is the signed distance function to the interface (positive in the
liquid) and 2ε is the profile thickness. Using the interface velocity uΓ = ug−ṁ/ρgn, the level-set
is advected with an equation derived in [13]

∂ψ

∂t
+∇ · (ugψ) =

ṁ

ρg
n · ∇ψ + ψ∇ · ug. (5)

The right-hand side vanishes when there is no phase change. The second term of the right-
hand side takes into account the fact that the divergence-free condition is not necessarily re-
spected in the liquid phase and close to the interface [13].
In this work, the hyperbolic tangent profile is reshaped with the re-initialization equation [3]

∂ψ

∂τ
= ∇ ·

 1

4 cosh2
(
φmap

2ε

) (∇φmap · n− 1)n

 , (6)

which is solved in pseudo-time τ until steady state, and where φmap = ε ln (ψ/(1− ψ)) is a
signed distance function mapped from the conservative level-set. The interface normal vector
is defined as n = ∇φ/||∇φ||.

Numerical method
The simulations are performed with the code YALES2, a library of finite-volume node-centered
low Mach number solvers [11]. The Navier-Stokes equations are solved with a standard pro-
jection method [4]. The numerical method to perform boiling simulations is presented in [14].
The Ghost Fluid Method [5] is used, enabling a sharp treatment of the discontinuities at the
interface. In [14], the standard distance level-set was used, whereas the conservative level-set
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is employed in the present study. The level-set re-initialization algorithm was adapted to un-
structured meshes by [8]. Another slight difference resides in the velocity extensions across
the interface. As a matter of fact, the velocity discontinuity at the interface given by Eq. (1)
requires velocity extensions to compute the velocity derivatives close to the interface. In [14],
the velocity is extended constantly across the interface with the method developed by [1]. The
equation ∂ui/∂τ +∇ui · n = 0 is solved in pseudo-time τ until steady state, with the subscript
i representing the phase. At steady state, this equation imposes that the velocity derivative in
the direction normal to the interface is null. In this study we use instead the method employed
by [16] for simulation of boiling flows on cartesian grids. The ghost velocities are defined as

uGl = ug + ṁ

[
1

ρ

]
Γ

n if ψ < 0, (7)

uGg = ul − ṁ
[

1

ρ

]
Γ

n if ψ > 0. (8)

This ensures that the velocity jump is constant in the direction normal to the interface.
In addition, for contact line simulations, the contact angle is imposed thanks to a curvature
modification at contact line. Following [17], a sub-grid scale curvature κSGS is added to the
interface curvature κ at contact line, such that

κCL = κ+ κSGS = κ− n · nwall + cos (θeq)

h
, (9)

where nwall is the wall normal vector, θeq the imposed contact angle and h half of the cell size
at wall. The additional surface tension force at contact line is thus proportional to the difference
between measured and imposed contact angles. Furthermore, a singularity at contact line
appears when a no-slip condition is used at wall [7]. To alleviate this problem, a Navier slip
condition is used, defined by

u|| = λ
∂u||

∂y

∣∣∣∣
wall

, (10)

where u|| is the wall tangential velocity, y the wall normal coordinate and λ a slip length. This
allows the contact line movement on the wall.

Boiling simulations without contact line
The solver is first assessed on various test cases with phase change.

Growth of a 3D static bubble in a superheated liquid
A standard test case to assess a boiling solver consists in a vapor bubble growth in a su-
perheated liquid. The vapor phase is initially at saturation temperature while the temperature
profile in the liquid is radially symmetric. The full analytical solution has been derived by [15]
and is recalled in [13]. The gravity being neglected, the bubble remains spherical and its center
of mass does not move. The simulation is initialized at a time t0 with the analytical solution.
The theoretical radius is given at any time t > t0 by Rth(t) = 2β

√
αlt, where αl = λl/

(
ρlcp,l

)
is the liquid thermal diffusivity. The parameter β is found from an implicit equation as detailed
in [14]. It depends on the Jakob number, defined as Ja = ρlcp,l (T∞ − Tsat) /(ρgLv), where T∞
is the temperature in the liquid far away from the interface. The following simulations are per-
formed for Ja = 3. The physical parameters representing liquid water and vapor are the same
as in [14] and are recalled in Table 1. The heat capacity at constant pressure of the liquid has
been purposely decreased to reduce computational time, as explained in [14]. The simulations
are performed until tf = 4t0, meaning that Rth(tf ) = 2Rth(t0) = 2R0, with R0 = 0.001 m. Outlet
conditions are applied on the domain boundaries, allowing the liquid to exit the domain instead
of being compressed. The present case consists in the extension of the work performed in [14]
with signed distance function to the conservative level-set. The relative errors on the computed
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Table 1. Physical properties for simulation of the growth of a 3D bubble in a superheated liquid.

Phase
ρ µ cp λ Lv σ Tsat

[kg m−3] [kg s−1 m−1] [J kg−1 K−1] [W m−1 K−1] [J kg−1] [N m−1] [K]

l 958 2.82× 10−4 42.16 0.6
2.257× 106 5.9× 10−2 373

g 0.59 1.23× 10−6 2034 0.026
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Figure 1. Relative errors on bubble radius for 3D bubble growth in a superheated liquid versus the number of cells
along the bubble initial radius. CLS stands for conservative level-set and SDF stands for signed distance function.

The standard L2 and L∞ norm are used.

radius at tf are presented on Fig. 1 for both the signed distance function and the conservative
level-set, for four different cell sizes. For both level-set methods, the error converges initially
with mesh refinement before reaching a plateau. As previously observed by [16, 14] for Ja = 3,
the error reaches a minimum value when the thermal boundary layer is sufficiently resolved.
This error, about 1 % for conservative level-set, is considered satisfactory in this study. Also,
it can be seen that the use of conservative level-set leads to lower errors, especially for fine
meshes. Therefore we only use the conservative level-set in the next sections.

Rising of a 3D growing bubble
We now simulate the rising of a growing bubble in a superheated liquid. This study has been
recently performed on a 2D axisymmetric cartesian mesh by [16]. The configuration is the
same as in the previous section except that gravity (g = 9.81 m s−1) is taken into account. The
physical properties are identical as in Table 1, only the heat capacity at constant pressure of the
liquid is set back to its standard value cp,l = 4216 J kg−1 K−1 and the surface tension is lowered
to σ = 0.001 N m−1. The temperature is initialized as in the previous section with Ja = 3 and the
initial bubble radius is R0 = 0.0001 m. The simulations are performed until the time tf = 18t0.
The mesh is always kept fine around the interface thanks to dynamic mesh adaptation, thus
limiting the simulations cost [10]. The bubble grows and rises due to buoyancy. It does not
remain spherical because of the low surface tension coefficient, as illustrated on Fig. 2a. A
thermal plume below the bubble can be observed. The temperature gradients being lower in
this area, the mass transfer rate is lower than above the bubble where the thermal boundary
layer is thinner. As in [16], we plot the evolution of the Nusselt number against the square root
of the Peclet number on Fig. 2b for two cell sizes. The Nusselt number is defined as

Nu = ρgLv
dR

dt

2R

λl (T∞ − Tsat)
, (11)

where R is the bubble equivalent radius. The Peclet number is defined as Pe = 2ρlcp,lVbR/λl,
with Vb the average bubble ascending velocity.
A slight difference in the Nusselt number can be observed between the two cell sizes, the finest
mesh being closer to the results of [16]. Even if the initial and final values are close to the
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Figure 2. (a) Rising bubble at final time together with midplane, both colored by temperature. (b) Nusselt number
evolution versus square root of the Peclet number square.

reference, the curve shape is however quite different from the one of [16]. It may be explained
by the cell size, which can be much smaller in the axisymmetric case with limited cost.

2D film boiling
Film boiling is a pool boiling regime such that the heated wall is covered by a vapor layer.
The absence of contact line makes it numerically less complex than nucleate boiling. In [9],
the authors simulate 2D film boiling of saturated water at near critical pressure on a carte-
sian grid. We reproduce this case on unstructured grids here. The physical properties are
recalled in Table 2. The interface is initialized at the location y = λd/128 (4 + cos (2πx/λd)) with

Table 2. Physical properties of saturated water at near critical pressure for 2D film boiling.

Phase
ρ µ cp λ Lv σ Tsat

[kg m−3] [kg s−1 m−1] [J kg−1 K−1] [W m−1 K−1] [J kg−1] [N m−1] [K]

l 402.4 4.67× 10−5 2.18× 105 0.545
2.764× 105 7× 10−5 646

g 242.7 3.238× 10−5 3.52× 105 0.538

λd = 2π
√

3σ/ (g (ρl − ρg)), which is the most unstable Taylor wavelength. This forces the bub-
ble creation at the domain center on the crest of the interface. The computational domain is a
square box with a side length λd and periodic conditions are applied on the lateral boundaries.
The bottom wall temperature is set to Twall = Tsat + 5 K. The liquid is initialized at satura-
tion temperature and the vapor temperature decreases linearly from Twall at the wall to Tsat at
the interface. First, a mesh independence study is performed. The cell size has to be small
enough to resolve the thermal boundary layer which can be very thin. Four meshes such that
λd/∆ = 100, 200, 400, 800 are tested. The interface positions are displayed on Fig. 3a. For
the coarsest mesh, the bubble formation is too fast while the two finest meshes show similar
results. As a matter of fact, if not enough cells are present in the thermal boundary layer, the
temperature gradient is not correctly computed, which impacts the mass transfer rate and tem-
perature transport, leading to erroneous overall dynamics. The qualitative behaviour of the film
is now studied for the finest grid, using dynamic mesh adaptation. The interface position and
the temperature field are shown on Fig. 3b and compared to the results of [9], reproduced on
Fig. 3c. The bubble shape is similar between both studies. As previously observed by [6, 18],
the bubble does not detach from the vapor film. Instead, a long and thin stem presenting low
temperature gradients connects the bubble to the film. This behaviour is expected since there
is no radial curvature in 2D, which would be responsible for the bubble pinch-off in 3D. The stem
being straight, the surface tension effects are negligible. It can be reasonable to assume that
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Figure 3. (a) Interface positions for 2D film boiling at time t = 0.28 s for four grid resolutions. (b) Interface position
(white) for 2D film boiling at time t = 0.338 s with temperature field. (c) Interface position (black) for 2D film boiling

at time t = 0.338 s, results of [9].

the pinch-off mechanism observed in some 2D film boiling studies is due to grid effects.

Contact line simulations without phase change
The solver ability to simulate two-phase flows with contact lines, without phase change, is
assessed in this section.

Equilibrium shape of a 2D drop on a flat wall
To assess the contact angle imposition method, a standard 2D test case is performed. A steady
semicircular drop is initialized on a flat wall with an initial 90◦ contact angle. The contact points
move in order to respect the imposed contact angle which is different from the initial contact
angle. The equilibrium shape of the drop is a circular cap since gravity is null. The radius R, the
spreading length L and the height e of the equilibrium interface in function of the initial radius
R0 and the imposed contact angle θeq (in the liquid) are given by

R = R0

√
π

2 (θeq − sin (θeq) cos (θeq))
, (12)

L = 2R sin (θeq) , (13)
e = R (1− cos (θeq)) . (14)

The physical parameters are taken from [17] and summed up in Table 3. The simulation is

Table 3. Parameters for 2D drop equilibrium on a flat wall.

Phase
ρ µ σ R0

[kg m−3] [kg s−1 m−1] [N m−1] [m]

l 1000 10−2

10−5 0.01
g 1 10−5

performed for various imposed angles ranging from 10◦ to 170◦, on an unstructured mesh such
that R0/∆ = 20. In this particular case, a free-slip condition is used at the wall in order to
assess only the contact angle imposition method. The measured normalized spreading lengths
and heights are plotted on Fig. 4 as a function of the imposed contact angle and are compared
to the theoretical ones. The results show a rather good agreement with the analytical solution.
For the lowest contact angle, the computed spreading length differs slightly from the analytical
solution. This could be explained by the weakness of the capillary forces near equilibrium for
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Figure 4. Normalized spreading length L/R0 and normalized height e/R0 at equilibrium as a function of the
imposed contact angle θeq.

very low contact angles, competing with numerical artefacts of level-set re-initialization and
spurious currents.

Drop impact on a superhydrophobic cone
The contact angle imposition method being validated, we now simulate the drop impact on
a cone. We reproduce the experiments of [2] where a drop of water bounces on a superhy-
drophobic cone. The drop of radius R0 has an initial downward velocity V0 and the cone shape
is defined by its semi-angle α. The gravity is oriented along the cone axis towards the cone
basis and the drop bottom is initially at a distance R0/4 from the cone tip. The physical pa-
rameters are given in Table 4. The simulations are performed on an unstructured mesh such

Table 4. Parameters for 3D drop impact on a superhydrophobic cone.

Phase
ρ µ σ R0 θeq

[kg m−3] [kg s−1 m−1] [N m−1] [m] [−]

l 1000 10−3

0.072 0.0013 163◦
g 1 1.85× 10−5

that R0/∆ = 15. The first case, with an initial velocity V0 = 0.23 m s−1 and a cone semi-angle
α = 50◦ is represented on Fig. 5. The second case, with V0 = 0.35 m s−1 and α = 30◦ is
represented on Fig. 6. The snapshots are taken at the same time for the experiments and our
simulations. In the first case, the drop spreads on the cone top before bouncing but is not

Figure 5. Drop impact (V0 = 0.23 m s−1) on a cone with α = 50◦. Top: results from [2].

pierced, while in the second one the drop forms a torus before being repelled. For both cases,
a good qualitative agreement with the experiments is found. We find the same bounce times
as in the experiments.

Conclusions
Simulations of boiling on unstructured meshes have been performed successfully in this arti-
cle. Contrary to [14], the interface is captured with a conservative level-set method, known to
alleviate mass conservation issues. This improves the method accuracy on a canonical 3D
test case. The employed methodology is able to take into account buoyancy effects, interface
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Figure 6. Drop impact (V0 = 0.35 m s−1) on a cone with α = 30◦. Top: results from [2].

deformation and thin thermal boundary layers. Dynamic mesh adaptation allows to simulate 3D
configurations without a tremendous number of cells. Film boiling is simulated with creation of
a bubble from a vapor film. On the other hand, simulations of contact lines are performed in 2D
and 3D. Even if further work is needed to couple phase change with contact lines, in particular
to deal with the thermal singularity at contact line, these promising results let the authors hope
to simulate nucleate boiling with surface wettability effects in a near future.
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