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Abstract
Breakup phenomena of a viscous liquid column jet in an inviscid stationary surrounding gas are
analytically investigated, when the jet flows through a coaxial cylindrical sheath. Under a long
wave approximation, axisymmetric nonlinear evolution equations of the jet and surrounding gas
are derived and numerically solved under a spatially periodic boundary condition. Validity and
limitation of the approximation are examined in the linear regime in comparison with exact insta-
bilities. It is shown in the nonlinear analysis that there exist three types of breakup modes: the
Rayleigh mode in which the surface tension instability is dominant and the breakup is caused
by pinching, the first wind-induced mode in which blobs connected by threads are produced by
increased aerodynamic instability and the second wind-induced mode in which the jet surface
deforms to be spiked like a cusp without pinching and droplets are to be produced from a tip of
the cusp. Existing regions of these modes are examined in the parameter space of the Weber
number and the sheath radius for different Reynolds numbers. As a consequence, the closely
placed sheath wall always suppresses the breakup by pinching and results in the appearance
of the second wind-induced mode with cusp profiles.
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Introduction
Liquid jets are of great importance in engineering and industrial applications in producing micro-
drops and thin fibers, where destabilization in the former and stabilization in the latter play an
important role. Such instabilities have been investigated experimentally and theoretically [1, 2,
3, 4, 5] since Lord Rayleigh [6] examined linear instabilities of periodic disturbances on a liquid
column.
It is now experimentally known that, when the jet is emanating from a circular nozzle in a sur-
rounding gas, liquid drops are naturally produced from the jet with or without satellites after
breaking up due to the instabilities [7, 8, 9, 10]. In a laminar jet, the surface tension domi-
nant (Rayleigh) mode mainly appears in a low emanating speed, while in a high emanating
speed the Taylor mode dominates due to the aerodynamic instability, which consists of the first
wind-induced and the second wind-induced modes. As the flow speed increases, a transition
appears from the first to the second wind-induced mode, where blobs connected by threads are
produced in the former, while the jet surface deforms to be spiked like a cusp without pinching
and droplets are to be produced from a tip of the cusp in the latter.
Theoretically, the Rayleigh mode has been examined in both linear and nonlinear analyses and
the mechanism of producing liquid drops and satellites is rather well understood (for example,
[5, 4] and refer the references therein). However, the mechanism of producing fine droplets in
the Taylor mode, particularly the second wind-induced mode, is not sufficiently understood even
now. Most of the analyses are made in the linear regime and show that fine liquid drops are
produced due to not only the shift of a lower unstable wave number region to a higher region,
but also the appearance of the unstable asymmetric modes [11, 12, 13].
In the nonlinear analysis, on the other hand, Spangler et al. [14] numerically examined the
axisymmetric deformations of the jet at a medium speed which is typical in the Taylor mode
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regime when the jet and surrounding gas are assumed to be the potential flows. It is shown in
their results that the jet surface deforms to be spiked like a cusp in the second-wind induced
mode. They expected that a liquid ring is produced around the jet from the tip of the cusp and
later splits into a series of droplets circumferentially. This scenario of producing droplets in
the second wind-induced mode is possible even for axisymmetric disturbances at such a flow
speed that the asymmetric modes do not yet grow large.
In the above analyses the surrounding gas phase is assumed to be unboundedly extended. In
practice, however, the surrounding gas would be usually bounded by a solid wall like a duct with
various cross sections or influenced by any other constructions such as an experimental set up,
whether they affect behavior of the jet or not. From this point of view, it is important to under-
stand the influence of such external boundaries on the breakup of the jet, particularly, in a high
speed jet where motions of the surrounding gas play an important role. In the present paper, as
the simplest case of the external boundaries, considered is a coaxial cylindrical sheath through
which a viscous jet in a surrounding gas is flowing. There may exist a critical sheath radius for
which the sheath wall significantly affects the aerodynamic instability, since the influence of the
sheath on the aerodynamic instability diminishes as the radius of the sheath becomes larger. In
this sense, the present problem is different from usual two-layer coaxial flows in a pipe. The end
of this study is to theoretically clarify the influence of a coaxial sheath wall on the aerodynamic
instability. The analysis is performed in order to understand influence of the sheath wall on the
linear and nonlinear instabilities of the jet which results from the surface tension, velocity and
density differences and gap length.

Reduced long wave equations
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Figure 1. Schematic of a liquid jet in a surrounding gas flowing through a coaxial cylindrical sheath.

As is shown in Fig. 1, we consider a problem that a liquid jet of radius r = h(z, t) flows in a
surrounding gas through a coaxial cylindrical sheath of the constant radius r = H (h < H)
in the (r, z) axisymmetric cylindrical coordinate system and time t. Denoting the jet and the
surrounding gas as j = 1 and 2, respectively, the velocity vector vj = (uj , wj), the pressures
pj are functions of r, z and t. The surface tension is denoted as σ, the densities as ρj and
the viscosities as µj . For simplicity, the viscosity of the surrounding gas is neglected (µ2 = 0)
and the gravitational effect is ignored since a sufficiently large velocity flow is considered in
a quiescent gas medium. In addition, both jet liquid and surrounding gas are assumed to be
incompressible. The outward normal unit vector on the jet surface is denoted as n, while the
surface tangential unit vector as tz in the flow direction. The basic equations consist of the
continuity and momentum equations, where these are of the jet (j = 1) for 0 ≤ r < h and of the
surrounding gas (j = 2) for h < r < H. On the other hand, the boundary conditions consist of
the well-known kinematical and dynamical conditions on the jet surface at r = h(z, t), while at
r = H only imposed is the condition of u2 = 0.
Then, the following expansions with respect to the jet radius and the surrounding gas phase
thickness are introduced [15]:
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(i) liquid jet(0 ≤ r < h):

w1 = w
(0)
1 + r2w

(2)
1 + · · · , (1a)

p1 = p
(0)
1 + r2p

(2)
1 + · · · , (1b)

(ii) surrounding gas (h < r < H):

u2 = u
(0)
2 + (r −R)u

(1)
2 + (r −R)2u

(2)
2 + · · · , (2a)

w2 = w
(0)
2 + (r −R)w

(1)
2 + (r −R)2w

(2)
2 + · · · , (2b)

p2 = p
(0)
2 + (r −R)p

(1)
2 + (r −R)2p

(2)
2 + · · · , (2c)

where the radius at the mid-plane of the surrounding gas phase R ≡ (H + h)/2 is introduced.
In the above representations, the dependent variables w1, p1, u2, w2 and p2 are functions of r, z
and t, while R and coefficients of the expansions are functions of z and t, although u1 can be
obtained through the equation of continuity.
Substituting the above expansions (1) and (2) into the basic equations and the boundary con-
ditions, we retain the lowest order terms under the following conditions: the order of magnitude
of variables is assumed to be h ≲ b ≪ λ when b ≡ H − h is the gas phase thickness and λ is
the characteristic wave length of deformations, where H and λ are taken to be of O(1). Then,
the magnitude of the expansion parameters is r2 ≤ h2 = O(h2) in (1) and |r −R| ≤ b/2 = O(b)
in (2), while R = O(1) and ∂/∂z = O(1) for z ∼ λ, in addition to ∂/∂t = O(1).
As a result of this, we finally obtain the following nonlinear simultaneous equations in the nondi-
mensional forms [15]:

∂h

∂t
= −w1

∂h

∂z
− h

2

∂w1

∂z
, (3)

∂w1

∂t
= −w1

∂w1

∂z
− ∂p1

∂z
+

1

Re

(
2
∂2w1

∂z2
+

6

h

∂h

∂z

∂w1

∂z

)
, (4)

∂w2

∂t
= −w2

∂w2

∂z
− 1

γ

(∂p(0)2

∂z
− p

(1)
2

∂R

∂z

)
, (5)

∂u2
∂t

= −w2
∂u2
∂z

− 1

γ
p
(1)
2 , (6)

where the superscripts on w1, w2, u2 and p1 have been omitted. In the above equations, the
gas pressures p

(0)
2 and p

(1)
2 are governed by the following equations in each time through the

pressure relation between the core and gas p1 = p
(0)
2 + p

(1)
2 (h−R) +

1

Wb
κ− 1

Re

∂w1

∂z
:

(
A1

∂2

∂z2
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∂

∂z

)
p
(0)
2 +

(
A3

∂2

∂z2
+A4

∂
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p
(1)
2 +A6 = 0, (7a)(
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∂2

∂z2
+B2

∂

∂z

)
p
(0)
2 +

(
B3

∂2

∂z2
+B4

∂

∂z
+B5

)
p
(1)
2 +B6 = 0, (7b)

where the coefficients A1 to A6 and B1 to B6 are rather complicated functions of h, w1, w2 and
u2. In the representations (3) to (7), the length and velocity have been nondimensionalized by
the undisturbed jet radius a and undisturbed axial velocity of the jet W and, so that, the time is
nondimensionalized by a/W , while the pressure by ρ1W

2. Then the following nondimensional
parameters are introduced: the Weber number Wb = ρ1W

2a/σ, the Reynolds number Re =
ρ1Wa/µ1, the density ratio γ = ρ2/ρ1 and the sheath radius H.

Validity and limitations of the approximation
Before going on to the nonlinear analysis based on the preceding reduced equations, it is
beneficial to examined the linear instabilities and to know validity and limitation of the present
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Figure 2. Comparison of the growth rates ΩI between the exact instability and the instability based on the long
wave approximation for γ = 0.001 and Re = ∞, 1000, 100 and 10 when Wb = 1000 for H = 2 in (a) and H = 3 in

(b).

long wave approximation. Figure 2 shows typical results of the instabilities for rather large Wb
when Wb = 1000, γ = 0.001 and Re = ∞, 1000, 100, 10, where for H = 2 in (a) and H = 3 in
(b). In the figure the solid lines denote the long wave approximation, while the symbols denote
exact solutions of the instability, where □, △, ⃝ and ▽ correspond to Re = ∞, 1000, 100 and
10, respectively. It is found for H = 2 in Fig. 2(a) that the maximum growth rate in the exact
solution becomes smaller than that in the approximation as Re increases, though the cut-off
wave number is almost the same in both exact and approximation for all Re. However, when
H = 3 in Fig. 2(b), the discrepancy between the exact and approximation appears not only in
the maximum growth rates but also in the cut-off wave numbers, though the cut-off wave number
is still independent of Re. In particular, the discrepancy of maximum growth rate between the
exact and the approximation increases with the increase of H as well as Re.
We note that the discrepancy between both results is obvious for H ≳ 3 when Wb = 1000,
though the approximation agrees well with the exact solution even for much larger H when
lower Wb. As a result, there exists a critical length Hc below which the present long wave
approximation is valid and this Hc decreases with the increase of Wb. On the other hand, it is
found that there exist Hw above which the temporal growth rate ΩIm, the corresponding wave
number km and the cut-off wave number kc in the exact solutions are almost independent of H.
This means that the influence of the sheath wall can be ignored in such a region as H > Hw

even if the sheath wall is considered in the analysis. Variations of these Hc and Hw with Wb are
shown in Fig. 3 for γ = 0.0001 (thin lines), 0.001 (medium lines) and 0.01 (thick lines), where
solid lines denote for Hc and broken lines for Hw for the most dangerous case Re = ∞.
It is found for any γ that Hc gradually decreases with the increase of Wb and the present long
wave approximation is valid in the region 1 < H < Hc. In the above, Hc is determined in such
a way that the discrepancy of kc between the exact and approximation is relatively within 5 %
tolerance. On the other hand, it is found that there exist Wb that Hw takes the largest value for
each γ and this Wb increases with the decrease of γ. In the above, Hw is determined in such
a way that the relative difference of kc between the exact solutions at H = Hw and H = ∞
is at most 5 % tolerance. As a result, we can see that there exist such parameter region
Hw < H < Hc that the approximation is valid and the influence of the sheath wall is ignored.
We note that these regions of Hc and Hw are determined based on not km but kc because the
value of kc is independent of Re as long as H and Wb are fixed.

Numerical results
In the numerical procedure under the spatially periodic boundary condition for the time evolution
equations (3) to (6), the 4th order Runge-Kutta method is used for the time derivatives and the
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Figure 3. Validity and limitation of the approximation and influence of the sheath wall in the parameter region of
Wb and H when γ = 0.0001 (thin lines), 0.001 (medium lines) and 0.01 (thick lines). The wall does not affect for

H > Hw (broken lines) and the approximation is valid for 1 < H < Hc (solid lines) and, so that, the influence of the
wall can be neglected for Hw < H < Hc within the validity of the approximation.

finite difference (central difference) method is used for the spatial derivatives where the 3rd
order up-wind scheme is adopted for the advection terms. On the other hand, the pressure
equations (7) are solved by the Gauss elimination method after spatially discretizing. In these
calculations, the numerical time step size ∆t is taken as 0.001 and the spatial step size ∆x is
as 2π/(kN). The wave number k is taken as km giving the maximum growth rate ΩIm which
is obtained from the dispersion relation under the long wave approximation. The number N is
taken as 80 in all of the calculations, where grid independency is confirmed for N = 80, 120 and
160 except a small phase shift. The precision of the present calculations is within the tolerance
of 0.5% relative errors in volume ratio under the spatially periodic boundary condition at x and
x+ 2π/km.
It is noted in the present calculations that the variables h, w1, w2 and u2 at t + ∆t should be
obtained from those variables at t and the pressers p

(0)
2 and p

(1)
2 at t+∆t, while the pressures

p
(0)
2 and p

(1)
2 at t+∆t should be obtained from h, w1, w2 and u2 at t+∆t. In order to obtain more

precise solutions at t+∆t, the following procedure is adopted: First, the new h, w1, w2 and u2
at t+∆t are obtained by old h, w1, w2, u2, p

(0)
2 and p

(1)
2 at t. Next, by using thus obtained new

h, w1, w2 and u2 at t+∆t, the new pressures p
(0)
2 and p

(1)
2 at t+∆t are obtained. By replacing

the old pressures in the first step by the new pressures in the second step, the above first and
second steps are repeated until the new pressures are left unchanged, where the convergence
is achieved when the relative error is less than 10−8.
In the following, the initial condition is given as h = 1 + 0.01 cos kx for k = km and w1 = 1,
u1 = 0, w2 = u2 = 0, p1 = 1/Wb and p

(0)
2 = p

(1)
2 = 0 in all of the calculations. The calculations

for such initial values are carried out until the radius of the jet becomes less than 0.01 at the
neck of pinching or the jet surface touches the wall within the gap length 0.01.
We first consider the influence of Wb on the behavior of breakup of the jet. Figure 4 shows
typical breakup profiles and time evolutions of the maximum and minimum radii when Wb = 100,
γ = 0.001 and Re = ∞, where H = 1.8 (km = 0.745) in (a), H = 2 (km = 0.738) in (b) and H = 3
(km = 0.734) in (c), and the broken lines denote the linear theory in the long wave approximation
for comparison. It is found that the breakup profiles in both (b) and (c) appear by pinching and
produce large round blobs with satellite drops. However, in (a) for H < 2, the pinching breakup
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Figure 4. Profiles of the jet at the breakup and time evolutions of the maximum and minimum of h when Wb = 100,
γ = 0.001 and Re = ∞, where H = 1.8 (km = 0.745) in (a), H = 2 (km = 0.738) in (b) and H = 3 (km = 0.734) in

(c), and broken lines denote the linear results for comparison.
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Figure 5. Profiles of the jet at the breakup and time evolutions of maximum and minimum of h when Wb = 1000,
γ = 0.001 and Re = ∞, where H = 1.8 (km = 1.087) in (a), H = 2.2 (km = 1.042) in (b) and H = 2.3 (km = 1.042)

in (c), and broken lines denote the linear results for comparison.

does not appear and instead small tips appear at the top and down of the blobs. It is also found
that the time evolutions of the increase and decrease of radii are always overestimated by the
linear theory. In the nonlinear theory, the minimum radii decrease rapidly in the final stage in
(b) and (c) which leads to the breakup by pinching, while in (a) the maximum radius increases
more than the decrease of the minimum one in the final stage.
For much larger Wb, the breakup properties drastically change. Figure 5 shows breakup profiles
and time evolutions of the maximum and minimum radii when Wb = 1000, γ = 0.001 and
Re = ∞, where H = 1.8 (km = 1.087) in (a), H = 2.2 (km = 1.042) in (b) and H = 2.3
(km = 1.042) in (c), and the broken lines denote the linear theory for comparison. It is found that
a spiked profile like a ‘cusp’ and a moderate trough appear in (a) and (b), while the structure
of round blobs connected by threads appears in (c) when H slightly increases. In the time
evolutions, the maximum radius drastically increases in the final stage in (a) and (b), while both
maximum and minimum radii vary almost at the same rate in (c), where the linear theory still
over predicts the increase and decrease of h.
As for the classification of these breakup modes, we have seen that in the Rayleigh mode the
minimum radius rapidly decreases near the breakup and large liquid drops are produced by
pinching, while in the second wind-induced mode the maximum radius rapidly increase near
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Figure 6. Regions of the Rayleigh and Taylor (1st- and 2nd-wind induced) modes in the parameter space of Wb
and H, where γ = 0.001 for Re = ∞ (solid lines) and 100 (broken lines) in (a), while γ = 0.01 for Re = ∞ in (b).

the breakup and cusp profiles appear. In the first wind-induced mode, however, variation rates
of the maximum and minimum radii are almost the same and blobs are connected by threads
without pinching, though finally the long thread would be broken up due to the instability.
According to these criteria, we examine existing regions of the Rayleigh, first and second wind-
induced modes more precisely in the parameter space of Wb and H for different γ and Re.
Figure 6 shows the regions of these modes in the parameter space for 10 ≤ Wb ≤ 1000 and
1 ≤ H ≤ 3, where the cases of Re = ∞ (solid lines) and 100 (broken lines) for γ = 0.001 are
shown in (a), while Re = ∞ for γ = 0.01 in (b). It is found in Fig. 6(a) and (b) that the second
wind-induced mode prevails always for smaller H whose range gradually increases with the
increase of Wb. The range of H in the second wind-induced mode increases as Re decreases
and γ increases.
On the other hand, when H increases over the above range, the Rayleigh mode prevails for
smaller Wb and the first wind-induced mode for larger Wb. The increase of Re and γ diminish
the range of Wb for the Rayleigh mode. It is also found in Fig. 6(a) for 200 ≲ Wb ≲ 500 that the
Rayleigh mode appearers between the second and first wind-induced modes in H. The above
Rayleigh mode between the first and second wind-induced modes is also seen in Fig. 6(b) for
60 ≲ Wb ≲ 80.
As is shown in Fig. 3, the wall effect may appear for 1 < H < Hw within the 5 % torelance
in the linear regime. However, as is seen in the breakup profiles, this is not always the case
in the nonlinear regime. In fact, according to Fig. 3, the wall effect may appear for Hw = 4.3
when Wb = 100 and γ = 0.001. However, Fig. 4 shows that the breakup profiles for H = 2
and 3 are almost the same except for some phase shift, while the breakup profiles for H = 1.8
becomes completely different. This means that 1.8 < Hw < 2 in the nonlinear regime, which
can not be expected from the linear analysis. For large Weber number, the wall effect may
appear for Hw = 2.8 when Wb = 1000 and γ = 0.001 in the linear regime, while Fig. 5 shows
that 2.2 < Hw < 2.3 in the nonlinear analysis. Resulting from this, the border for appearance of
the wall effect is shifted to lower H in the nonlinear results.

Concluding remarks
The instabilities and breakup phenomena of a liquid column jet in a stationary surrounding gas
have been analytically investigated, when the jet flows through a coaxial cylindrical sheath.
Validity and limitation of the long wave approximation are examined in comparison with the
exact linear instabilities. It is found that there exist two critical sheath radii Hc and Hw, where
the present approximation is valid when H < Hc, while the influence of the wall disappears
when H > Hw. Therefore, for Hw < H < Hc the approximation is valid and the influence of the
wall can be neglected. However, it is seen from the breakup profiles that Hw in the nonlinear
regime is more reduced than the linear expectation as Wb and γ decrease.
On the other hand, it is found that there exist three types of breakup profiles whose breakup
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modes are called the Rayleigh and first and second wind-induced modes. The existing regions
of these modes are examined in the parameter space of Wb and H, which is determined from
geometrical properties in the breakup profiles and rapid increase or decreases of h in the final
stage. Critical curves to distinguish these modes in the parameter space for different γ and Re
are obtained. Then the mode transition of the second wind-induced mode to the Rayleigh or
to the first wind-induced mode occurs generally when H increases, while the transition of the
Rayleigh mode to the first wind-induced mode appears when Wb increases.
It is shown experimentally [9] for the unbounded surrounding gas that the first-wind induced
mode appears when 600 ≲ Wb ≲ 6500 for γ = 0.001, while the second-wind induced mode
appears when 6500 ≲ Wb ≲ 20000 for γ = 0.001. Although these experimental results relatively
agree well with the numerical results by Spangler et al. [14], the present results for 10 ≤ Wb ≤
1000 and γ = 0.001 show that the first wind-induced modes can appear for larger Wb than 200 ∼
500 depending on H, while the second wind induced mode appears when H ≲ 2 depending on
Wb. Consequently, the coaxial sheath wall is available to produce fine droplets resulting from
the second wind-induced mode even in much smaller Wb by placing the sheath wall closely to
the jet.
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